
Advances in Electrical and Electronic Engineering

166

FORMAL SPECIFICATION IN “Z” LANGUAGE BY SOFTWARE Z/EVES

J. Švec, J. Zahradník

Department of Control and Information Systems, Faculty of Electrical Engineering,
University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic

e-mail: jozef.svec@fel.utc.sk, jiri.zahradnik@fel.utc.sk

Summary The paper shows a short overview of representation formalisms, which can be used for specification of technical
system functional requirements. Some basic model schemas of function called User Identification of ITS are presented by
formal specification “Z” language and software Z/EVES.

1. INTRODUCTION

Design of easy and usable models is process, which
verifies human ability to understand problem and
also it allows understanding to other. Operations in
the system can be analyzed and improved more
effectively by process modeling. Design of models
is also used in transport applications [4], 5].
Functional requirements specification can be
realized through following representation
formalisms:
• informal: optional graphic representation,

natural language, example description,
animations, and so on;

• semi-formal: state machine diagrams, entity-
relational diagrams, unified modeling language
and so on;

• formal: specification languages or knowledge
representation languages.

1.1. Informal specification

Informal specification is markedly oriented to user
– it is akin to him, well-know and it has big
expressive ability (include polyvalence expression,
inconsistent and opposite propositions).

1.2. Semi-formal specification

Semi-formal specification is based on structured
visualization of the system – it’s easy, presents
good system overview and it’s usually used as a
quasi-standard in industry. Unlike informal
specification, semi-formal specification has partly
formal defined semantic. The following diagrams
(object oriented model, data flows diagrams, entity-
relational diagrams, Petri nets, etc.) can be included
to the semi-formal specification.

1.3. Formal specification
Formal specification is expression of traced
attributes list, which is expressed by formal
specification language and with specific abstraction
level. Formal specification languages have better
defined semantic. Based on these language
attributes it is possible to conclude about most of
represented knowledge including entire or partial

code generation. Formal specification language
creates mathematic basis for formal method. This
method shows, what specification has to say.
Language shows in detail how reality involved in
specification can be expressed. Languages like VDM,
Z, B, EVES, LOTOS should be included to this
language group.

2. FORMAL SPECIFICATION “Z”
LANGUAGE

“Z” language is a formal specification language,
which is used for description and functions modelling
of computer systems. This language enables to write
formal specification of computer programs and to
formulate evidences of system behaviour.
Specification languages are situated between natural
and program languages. These types of languages
enable to eliminate internal ambiguity, which is
characteristic for natural languages. “Z” language
specification is organized into specific units, which
are reciprocally re-bounded by structural relations.
Each of these units has a declaration and
prepositional part. State schema, operating schema
and axiomatic definition are the most frequent used
schemas. Software pack called Z/EVES, and other
software packs, also serves for “Z” language schema
design support. Software pack Z/EVES enables
writing, developing and analysing of “Z” language
specification. Z/EVES consists of two parts. First
part is virtual server, which insures syntactic
propriety revision and activities for execution of
theorems and paragraphs logic validation. Second
part is graphical interface, which enables work with
specification. Transcription from informal
specification to “Z” language is realized by schema
design. There are six basic types of schemas (Free
Type Definition, Axiomatic Definition, Vertical
Definition of State Schema, State Initialization,
Operating Schema and Horizontal Schema). Other
schemas can be applied on this six basic schema
types. Schemas in next part are shifted from
application model example of Identifikácia
používate�a (User Identification) function in ITS.

 Formal specification in “Z” Language by software Z/EVES

167

Free Type Definition
This type of definition implements set of all system
states. Individual elements (constants) differ from
each other, and their sequel in definition is
arbitrary.

State ::��basic ��detection ��identification ��record

PresenceOfUser ::��present ��absent

TypeOfUser ::��passenger ��driver ��vehicle

IdentificationRequest ::��sent_to_PSG

 ��sent_to_DRV
 ��sent_to_VHC

Identification ::��recieved_from_PSG
 ��recieved_from_DRV
 ��recieved_from_VHC
 ��not_recieved_from_PSG
 ��not_recieved_from_DRV
 ��not_recieved_from_VHC

Fig. 1. Free Type Definition

In this case, this type of definition defines system
states that befit to type State (basic, detection,
identification, record). Next type is type
PresenceOfUser (present, absent), TypeOfUser
(passenger, driver, vehicle), IdentificationRequest
(which represents to whom the request was sent –
driver, passenger, vehicle) and Identification
(represents, if identification is received or not and
from whom– driver, passenger, vehicle).

Axiomatic Definition
This type of definition implements one or more
global variables. It consists of two parts. First part
is declaration and implements new symbols.
Second is predicate part (optional) and specifies
boundary conditions. This type of schema is not
show in application example.

State Schema
State Schema describes state of system. It consists
of the schema title, declaration (name:type) and
predicates (boundary conditions). This schema type
specifies all allowed states of the system. System
state is allowed, if all conditions from axiomatic
part are fulfilled.

� � System �

�state: State
�

Fig. 2. Vertical Definition of State Schema

The schema title is System in this concrete event. The
system from its definition should gain elements from
type State and these elements are: basic, detection,
identification and record.

State Initialization
This type of schema has to be in each specification
and it serves to system initialization by some way.

� � IniciateSystem �

�System
�� � � � � � � � � � � � � � �

�state = basic
�

Fig. 3. State Initialization

The start state, in which the system is started up, is
defined by type State. This state is defined as basic.

Operating Schema
Operating Schema specifies situations, in which the
system state is changed (�) or unchanged (�).
Schema also specifies operations including state
variables, main state variables and input and output
variables.

� � Detection� �

�ΞSystem
�user?: PresenceOfUser
�� � � � � � � � � � � � � � �

�state = basic
�user? = absent
�state' = basic
�

Fig. 4. Operating Schema – changeless system state

Operating Schema (fig. 4.) characterizes a situation,
in which the state is not changed after user detection.
Title of this operating schema is Detection. Input to
schema is user?. This input could have two elements
present, absent, which are defined by type
PresenceOfUser. Before operation the initial state, in
which the system occurs, is basic. If input user? will
gain element absent, than the system will stay in
previous state (state basic). This is represented by
title with apostrophe state ,́ which gain element
basic.

Advances in Electrical and Electronic Engineering

168

� � PSGDetection �

�∆System
�user?: PresenceOfUser
�type_of_user?: TypeOfUser
�request!: IdentificationRequest
�� � � � � � � � � � � � � � � �

�state = basic
�user? = present
�type_of_user? = passenger
�state' = detection
�request! = sent_to_PSG
�

Fig. 5. Operating Schema – change of system state

Operating schema in fig. 5., in contrast to previous
schema (fig. 4.), defines the change of the system
state, in which the system was before operation.
The title of schema is PSGDetection. Schema
includes two inputs to operation. First of them is
user?. This input could gain two elements present,
absent, which are defined by type PresenceOfUser.
Second input to operation is type_of_user?. This
input could gain three elements (passenger, driver
and vehicle) from type TypeOfUser. Schema also
includes one output from operation, which is
represented by title request!. This output represents
sending of identification requests to user. It could
gain elements from type IdentificationRequest.
These elements are sent_to_PSG, sent_to_DRV,
sent_to_VHC. Before operation the system is in the
basic state. If input to operation user? will gain
element present and input type_of_user? will gain
element passenger, then system will transfer to
after operation state. This after operation state is
represented by title with apostrophe state .́ This
state has title detection. Output from operation
request!, which gains element sent_to_PSG, is sent
at the same time, representing sending of
identification request to user.

Horizontal Schema
This type of schema is used for development of new
combinations from existing schemas, by the using of
schematic count operations. This schema type is not
shown in the application example.

3. CONTRIBUTION

The main purpose of this paper is to show how it is
possible to apply formal specification “Z” language
and Z/EVES software pack on modeling of service
User identification that was created based on defined
functional requirements specification.
This work has been supported by the Grant Agency
of the Slovak Republic VEGA, grant No.1/1044/04
"Theoretical foundations for implementing e-Safety
principles into intelligent transportation systems" and
project Coordination and Stimulation from
Innovative ITS Activities in Central and Eastern
European Countries - CONNECT, TEN-T
Programme EK.

REFERENCES

[1] JANOTA, A.: Formálna špecifikácia
bezpe�nostne kritických systémov. Habilita�ná
práca. 2004.

[2] Inteligentní dopravní systémy v podmínkách
dopravn� telekomunika�ního prost�edí v �eské
republice. Available at:
http://www.lt.fd.cvut.cz/its/

[3] SAALTINK, M.: The Z/EVES 2.0 User’s guide.
Technical Report TR-99-5493-06a, ORA Canada,
October 1999.

[4] JANOTA, A.: Using Z Specification for Railway
Interlocking Safety. In: Periodica Polytechnica,
Ser. Transport Engineering, Vol. 28, No. 1 - 2,
Hungary 2000. (s. 39-53) ISSN 1587-3811.

[5] SIMPSON, A. C., Model Checking for
Interlocking Safety. Proc. FMERail Workshop,
Vol. 2 of 2nd FMERail Seminar, Parks Road,
Oxford OX1 3QD, England, October 1998, ESSI
Project 26538.

