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Abstract. We propose a new method for maximizing
the spread of influence, based on the identification of
significant factors of the total energy of a control sys-
tem. The model of a socio-economic system can be rep-
resented in the form of cognitive maps that are directed
signed weighted graphs with cause-and-effect relation-
ships and cycles. Identification and selection of target
factors and effective control factors of a system is car-
ried out as a solution to the optimal control problem.
The influences are determined by the solution to opti-
mization problem of maximizing the objective function,
leading to matrix symmetrization. The gear-ratio sym-
metrization is based on computing the similarity ex-
tent of fan-beam structures of the influence spread of
vertices vi and vj to all other vertices. This approach
provides the real computational domain and correctness
of solving the optimal control problem. In addition, it
does not impose requirements for graphs to be ordering
relationships, to have a matrix of special type or to ful-
fill stability conditions. In this paper, determination of
new metrics of vertices, indicating and estimating the
extent and the ability to effectively control, are likewise
offered. Additionally, we provide experimental results
over real cognitive models in support.

Keywords

Directed weighted graphs, gear-ratio sym-
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1. Introduction

In underdetermined poorly formalized environments
i.e. management or social and economic systems it is
difficult or sometimes impossible to identify correctly
a specific problem in the control system because real-
world systems contain a big amount of factors and re-
lationships between them that influence a system func-
tioning. Furthermore, different types of limitations (fi-
nancial, technological, political, etc.) make this task
even more complicated. In this case, a directionality
of system work becomes very important. Misconcep-
tions about system function due to its complexity and
multiplicity of feedbacks lead to an erroneous decision-
making process. Therefore, selection of the main fac-
tors that significantly influence a system is an urgent
problem.

A complex model of such a poorly formalized system
can be represented as a fuzzy oriented weighted cyclic
signed graph with cause-effect relationships, which may
be formed by several methods, including the use of
fuzzy cognitive maps [1]. This graphical representa-
tion of the behavioral model of systems helps to provide
a general overview of factors influence on each other.
Nevertheless, the system target direction in addition to
selection of key elements from the system remains dif-
ficult to achieve. This obstacle is observed due to the
large dimensionality of graphs and the presence of nu-
merous feedbacks (the complexity of concepts and re-
lations between them). Moreover, dimensions of mod-
ern graphs exceed the capacity of human perception,
so their standard representation loses its informative
value.

For instance, in case that vertices are assigned ar-
bitrarily (by experts), a decision maker may assume
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that by increase of value of factors (estimated as bear-
ing ones), the desired values of target factors will be
reached as well. However, the system may act despite
the decision maker’s views. As a result, the main goal
will not be achieved, and may even become estranged.
Then a selection of essential factors may become the
base for a verification of initial representation of a sys-
tem. Comparison of the expected and real results of
the work will allow to ensure the correctness of a sys-
tem construction, and on this basis, to determine the
place of application of control impacts. For instance,
by forming a graph of corporate governance, the ex-
perts may assume that a significant component of the
system is the transparency of the Board of Directors
work. However, the automation results of the used
system may reveal another key factor - the formation
of a quality management system. Then, the control
impacts have to be necessarily applied to other groups
of factors, since the main objective is not to improve
the work of the Board of Directors, but the corporate
governance improvement, which is expressed in the re-
spective graph. A comparison of the expectations and
the automation results gives information about the re-
liability of the original graph of the system, or about
necessity in the system representation changes. Ac-
cordingly, an approach for the selection of significant
(key) factors of a system is a necessary and urgent man-
agement task.

Significant factors can be divided into two main
groups: the impact factors (application control pow-
ers) and target factors (response) to the greatest ex-
tent varying under the power of their influence. To
solve the problem of identifying and selecting the key
factors presented in the form of vertices of the graph,
the concept of effective controls and theory of effective
controls are introduced in this article. Definitions of
some metrics of the vertices states, reflecting the im-
pact of effective control components in the control sys-
tem, are described as well. This approach is based on
the postulates of general system theory and on systems
analysis applied to socio-economic systems control.

The novelty of the approach lies in the adaptation
of control model in technical systems for the control
in socio-economic systems. Accordingly, in the tech-
nical system control model, the growth vector of the
target vertices parameters is determined by a known
vector of control impacts from the solution to the sys-
tem of linear algebraic equations (SLE). For a graph
of socio-economic systems, the formulated task is to
find a vector of control impacts, leading to a maxi-
mum growth of indices of target factors. At the same
time, control factors and target factors are determined
from the solution to SLE, rather than appointed by the
decision-makers (the experts).

The decision is based on the model of impacts transi-
tion on the arcs of graph. Overcoming the possible in-

stability during the transmission of impacts is achieved
by appropriate formulation of the optimization prob-
lem. The problems of the spectrum location inside the
unit circle and of the interpretation of complex values
of the spectrum components are solved by their reduc-
tion to the optimization problem. This convergence of
emerging iterative processes for the resolvent is guar-
anteed.

2. Related Work

Fuzzy cognitive maps are directed signed weighted
cyclic graphs with cause-and-effect relationships. In
general, the trends of graph analysis are connected
with clustering, enlargement and metrics analysis of
the graph.

In the studies conducted in [2], [3], [4] and [5],
metrics, such as the node degree, betweenness cen-
trality and proximity are developed for the analysis
of social network, which are presented as unweighted
graphs. The introduced measure of h-type (h-index,
h-degree) [6] has potential in the field of analysis for
weighted networks as compared with traditional indica-
tors for unweighted ones. On the other hand, these ap-
proaches, based on the orientation of arcs, ignore their
weight characteristics, as well as the influence trans-
mitted from one vertex to another.

Zhang et al. [7] has attempted to take into account
the influence effect of one vertex to another. Addi-
tionally, the authors proposed a new metric of the
influence effect, which represents the product of the
arcs’ weights. The presented in the study method was
designed for clustering graphs, adjacency matrices of
which have a pronounced block structure. However,
these computations are based on simple expressions
having intuitive nature, which do not take into account
the influence effect of the transitive transfer. In the
articles [8] and [9], the degree of influence is not deter-
mined from intuitive considerations, but from solving
the system of linear algebraic equations (SLE). These
processes are considered in the dynamics, therefore, in
the study [8] the conditions of stability become rele-
vant, which was expressed in the restriction that the
entire spectrum of the matrix must be located inside
the unit circle while eigenvalues and eigenvectors ap-
pear to be complex.

Liu et al. [9] have analyzed the method of clustering
CSIP based on the sorting of influence power, as the
dynamic force of the impact between nodes, consid-
ering the surroundings. This method introduces new
metrics of vertices, which can serve as the basis for the
selection of key vertices. However, the results of the
aforementioned study [9] were mainly focused on the
stochastic matrix. This type of matrix is an adjacency
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matrix, in which the sums in the columns are strictly
equal to one and the elements are non-negative. Fail-
ure to comply with these conditions makes the use of
these methods practically impossible. In our study, we
focus on the problems oriented to the general matrices
rather than the special type, for the solution of which
the implementation of sustainability conditions is not
an essential principal requirement.

Furthermore, there is number of studies aimed at
solving the problem of identifying the most influen-
tial nodes in the directed networks [10], [11], [12], [13]
and [14]. In the studies [11], [12] and [13], the used
approach involves unidirectional irreversible switching
from one state to another. Thus, the active vertex may
or may not cause the activation of dormant neighbors,
but it cannot be returned to the inactive state. Sim-
ilarly, in [12], the buyer making a purchase cannot go
into a state of "a buyer who has not bought anything".

In the method proposed in [11] and [13], the exis-
tence of feedback is not permitted as opposed to a so-
cial network or cognitive model. That is, the vertex
which has become active, cannot turn into more (or
less) active state. The buyers of the product [12], which
persuade their friends, will not become the buyers of
the second instance of the product due to a positive
feedbacks of their friends. In the socio-economic net-
works considered by us, this is not applicable. Agi-
tator campaigns more actively, meeting an interested
response from their audience, while he/she reduces ac-
tivity in case of not finding an interest. Moreover, in
the same network not only more or less active agita-
tors might exist, but agitators having an opposite view,
whose activity is also competitive with respect to the
first point of view. In the method [11] and [13], the ac-
tivation of inactive neighboring vertices may increase
or decrease, but the process cannot take a negative
value, in contrast to our case.

In addition, the methods [10], [11], [12] and [13]
did not take into account the causal relationship be-
tween the vertices as an independent characteristic,
but rather the similarity measure based on the topo-
logical characteristics of the network. Marinazzo et al.
[14] applies Kernel-Granger causality method of multi-
dimensional time series processing, including the net-
works containing cycles. Network models with a suf-
ficiently large number of nodes (N) will contain more
links (N2), for optimal estimation of which time series,
even of greater extent (kN2), are required. In our case,
time series are simply unavailable, making it impossi-
ble to apply this method [14]. Therefore, the respective
characteristics are given by experts, and to minimize
the error of the expert setting for the model parame-
ters, the corresponding optimization problem is being

solved as well. Thus, this approach cannot be used for
tasks with cyclic signed directed graphs, as in our case.

3. Methods

Let’s consider the solution to a problem from the per-
spective of these three approaches: traditional techni-
cal control system Subsec. 3.1. , control features in
socio-economic systems, and presentation of the socio-
economic system as a graph Subsec. 3.2.

3.1. The Mathematical Formulation
of the Problem in Traditional
Technical Control System

Consider a finite graph G = 〈V,E〉, where V =
{v1, v2, ..., vn} is the finite set of vertices, n is the num-
ber of vertices, E = {〈vj , vk〉|vj ∈ V, vk ∈ V } is the
finite set of arcs. The graph G corresponds to the ad-
jacency matrix A = ‖ajk‖nxn, where weight ajk of arc
〈vj , vk〉 can express the presence of the arc (Boolean
value), the multiplicity of the arc, arc weight, fuzzy
measure of the adjacency of vertices vjand vk, etc.
Consider the following control model:

xj = uj + δ(a1jx1 + a2jx2 + · · ·+ anjxn),

= uj + δ

n∑
i=1

aijxi,
(1)

where xj is the value of the growth rate associated
with the vertex vi; uj is the amount of the controlling
impact on the coefficient associated with the vertex vj ;
δ is the damping factor, 0 < δ ≤ 1. The model may be
represented in the matrix form:

~x = ~u+ δAT~x or (E− δAT )~x = ~u, (2)

where ~x = (x1x2 . . . xn)T is the vector of growth rates
associated with the vertices; ~u = (u1u2 . . . un)T is the
vector of control impacts; E is the identity matrix.

The gain of the model can be explained as follows.
With the direct effect of the control influence ~u on the
~x:

~x = ~u. (3)

Taking into account the one-step spread of the impact
on the graph arcs:

~x = ~u+ AT~u. (4)

Taking into account the one-step spread of the impact
on the graph arcs:

~x = ~u+ AT~u+ ATAT~u. (5)
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On condition of the convergence of a forming series
we have:

~x = ~u+AT~u+ATAT~u+ ...+ATAT ...AT︸ ︷︷ ︸
k

~u+ ... (6)

To control the convergence we introduce the decre-
ment δ:

~x = ~u+δAT~u+ATAT~u+ ...+ATAT ...AT︸ ︷︷ ︸
k

u+ ... (7)

With absolute convergence we acquire the model
Eq. (2). Note that the model Eq. (2) contains the
final (not the dynamically changing) limit values of
the growth parameters and impacts, although it can
be interpreted in a first way as well. However, in the
dynamic case it is better to use the following view:

~x(k+1) = ~u(k) + δAT~x(k), (8)

or
~x(k+1) = ~x(k) + ~u(k) − (E− δAT )~x(k), (9)

which corresponds to the canonical form of iterative
numerical schemes.

If the inverse value δ−1 belongs to the resolvent set
of matrices A, total values of the growth indices~xcan
be found as the solution to SLE with matrix (E−δAT )
and the right-hand side of ~u:

~x = (E− δAT )−1~u. (10)

If δ−1 belongs to the spectrum, then there will be
a non-zero solution ~e 6= 0 even with zero impact ~u = ~0:

(E− δAT )e = ~0, (11)

expressed in terms of the eigenvalues λi(1 ≤ i ≤ n)
and their corresponding eigenvectors ei(1 ≤ i ≤ n) of
matrix AT . In the solution of ~x, regardless of the value
δ, the summands ~ei can be allocated. Generally λi, and
the components ~ei will be complex numbers even for
a real matrix A. Real parts of λi correspond to the
indices of exponential growth (in the case of a positive
number) or decrease (in the case of a negative number),
and imaginary parts correspond to their own oscillation
frequency. Multiplicity of a root λi adds polynomial
multipliers.

3.2. Adaptation of the Control
Models for Socio-Economic
Systems

The fundamental difference between socio-economic
systems and technical systems can be described as fol-
lows. At first, in the socio-economic systems many

events have cyclical, but not a strictly periodic nature
(i.e. recurrence occurs), but not in constant time inter-
vals (with the exception of agriculture). This feature
is a consequence of the fact that the system is not ac-
tually nonlinear, the spectrum is a supplement to the
resolvent set, instead of being a finite set of roots of the
characteristic polynomial, which will depend on the so-
lutions of x, for the analysis of which it was designed.
It means that such analysis would be difficult and there
is a risk of misleading.

The second fundamental difference is that the stabil-
ity of the socio-economic model is not prerequisite con-
dition, as it is for technical devices. For example, the
characteristic time of a word pronunciation by a man
lasts about 1 second. During this time, the receiver-
transmitter of a GSM-module produces about one mil-
lion oscillations at a frequency of 900/1800/1900 MHz.
If the device works unstably (the receiver or the trans-
mitter moves to the generator mode), it will manifest
itself in a few tens of oscillations. As a result, the con-
versation between two users will be impossible. The
conversation will also be impossible if the carrier fre-
quency is not stable, that is, the period of oscillation is
only approximately unchanged. In the socio-economic
systems, a company that seeks to gain a competitive
advantage will try to “break the closed cycle” of the
stability conditions. Moreover, everyone is aware that
aspirations of competitors are the same, and no one
gets a competitive advantage forever. Therefore, the
problem is established for the next economic cycle, and
if you can hold the position for not only one but for
several cycles, this is an additional benefit.

Finally, the third difference is that the goals may
not be unclear or stated and must be defined as a re-
sult of the problem solution. That is, the control im-
pact should be aimed at the indices, on the growth
of which the impact can be directed in the certain
socio-economic system. It makes no sense to refocus
agriculture in Yakutia (Extreme North of Russia) from
reindeer herder to a coffee cultivation, if there are fa-
vorable world prices for coffee. That is, control impact
for agriculture in Yakutia should not be directed by the
problem to cultivate coffee, but the most optimal solu-
tion should be defined from the socio-economic system
itself (the agriculture in Yakutia).

To account all these aforementioned differences it is
proposed to change the formulation of the problem,
i.e. to determine the vector of the indices growth ~x
based not on the known vector of control impacts ~u,
but by solving the SLE, see Eq. (10), and the vector ~u
- from the solution to the optimization problem of the
maximization of R: the ratio of the squares of norms
‖x̄‖2 and ‖ū‖2:

R =
‖~x‖2

‖~u‖2
=

((E− δAT )−1~u, (E− δAT )−1~u)

(~u, ~u)
,
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=
(Cu,u)

(u,u)
→ max, (12)

where ~x = (x1x2 . . . xn)T is the vector of indices growth
associated with the vertices; ~u = (u1u2 . . . un)T is the
vector of control impacts; C = ((E−δA)T (E−δA))−1

is the symmetric positively definite (or semidefinite)
matrix.

After that, the vector ~x is determined by solving
SLE, see Eq. (10). In the absence of restrictions on the
control impacts ~u, the maximum value of Rmax is equal
to the maximum eigenvalue λmax of the matrix C and
is achieved on the eigenvectors ~emax of the matrix C,
which corresponds to the eigenvalue of λmax. From the
symmetry of the matrix C follows, that all its eigenval-
ues including λmax are real numbers. All components
of the eigenvectors are also real numbers. The solution
of ~x SLE, see Eq. (10), with matrix and right-hand side
containing only real numbers will also consist only of
real numbers. This eliminates the problem of economic
parameters interpretation expressed in complex num-
bers because they cannot be expressed this way. Also
we add that for positive semidefinite matrix C all its
eigenvalues are non-negative, which is also typical for
the values of economic parameters.

Thus, the formulation of the problem, see Eq. (12),
consider all these differences. The solution of ~u = ~emax

is not given but is determined by solving the optimiza-
tion problem. The stability conditions do not dominate
the solution ~u = ~emax, and most likely they are even
being violated. All are computations are carried out
not in the complex, but in the real domain.

The differences in the task formulation are summa-
rized as follows. Solution of ~x SLE, see Eq. (12), is
designed for an arbitrary right-hand side of ~u and so
it may contain any eigenvectors of matrix (E− δAT ),
which are complex in general case. Solution Eq. (12)
is achieved on a concrete real vector ~u = ~emax of the
symmetric matrix C. Therefore, for the real matrix
(E− δAT ), the solution of ~x is real number as well. If
the eigenvalues of matrix (E− δAT ) are outside of the
unit circle, the small changes of component ~u will lead
to noticeable changes in the vector component ~x (insta-
bility). In case of a strong sensitivity to the accuracy
of the assignment of ~u the solution cannot be trusted.
In the formulation of the problem, see Eq. (12), the
concept of the strong changes in output data at small
changes in the input data is absent, because the basis
of determination ~u = ~emax and Rmax contains converg-
ing iterative processes. The stability conditions do not
dominate and are even meant to be disordered. In the
competitive environment of the socio-economic system
there are many reasons that will hinder the realization
of the optimal control.

Suppose that the control impact uj does not change
the index xj , but is transmitted to the indices xi(1 ≤

i ≤ n), which are related by arcs aji with indices xj :

xj =

n∑
i=1

aij(ui + δ

n∑
k=1

akixk), (13)

or in matrix form:

~x = AT (~u+ δAT~x)or(E− δATAT )~x = AT~u. (14)

The model can also be represented as:

~x = AT (~u+ δ(AT )3~u+ δ2(AT )5+

+ · · ·+ δk(AT )2k+1~u+ · · · ),
(15)

in the case of absolute convergence of the resulting se-
ries.

The statement of the problem, see Eq. (12), takes
the form:

R =
‖~x‖2

‖~u‖2
,

=
((E− δATAT )−1AT~u, (E− δATAT )−1AT~u)

(~u, ~u)
,

=
(B~u, ~u)

(~u, u)
→ max, (16)

where B = A(E − δAA)−1(E − δATAT )−1AT

= A(ZTZ)−1AT is the symmetric positive definite
(semidefinite) matrix.

The problem of determining the optimal control in
a linear system with feedback in the general case is
reduced to the solution of linear systems. The eigen-
values and eigenvectors of the matrix SLE contain in-
formation about the direction of the impact vector,
maximizing the amplitude of the vector response to an
applied impact, but in general are the complex num-
bers. To move from the domain of complex numbers to
the area of real ones, the formulation of the problem is
changed. The ratio of the squares of norms responses
and impacts is maximized, leading to the symmetriza-
tion of the matrix. In this case, not the dynamic oscil-
latory processes is important to us, but only maximiza-
tion of the total energy of the control system, including
the energy concluded in these oscillatory processes.

Unlike the original matrix in which element aij
meant the arc weight linking vertex vi with vertex vj ,
the element bij of symmetrized matrix express a quo-
tient of similarity of fan-beam structure of the impact
transfer of vertices vi to all other vertices with a similar
fan-beam structures of the impact transfer of vertices
vjto all other vertices. Naturally, a measure of this sim-
ilarity is symmetric. This approach to the symmetriza-
tion (for a directed graph) can be named the gear-ratio
symmetrization. The matrix B of the quadratic form
can be considered as a generalization of the co-citation
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matrix [15]. After receiving the responses to the op-
timal control, the question of the sustainability of re-
sponses can be raised. Solving this problem the gener-
alization of the bibliographic matrix will appear.

Matrix B is defined as the product B = AF, and
matrix F = (ZTZ)−1AT is found from the solution
of SLE with a unified matrix (ZTZ), but with differ-
ent right-hand sides: jth column of the matrix F is
the solution of linear systems with right-hand side -
the jth row of the adjacency matrix A. This SLE is
solved by LU-decomposition, as well as other linear
systems with non-symmetric matrices. The alterna-
tive Cholesky decomposition contains computations of
square roots. As a result, a smaller number of oper-
ations (taking the root) in Cholesky decomposition in
comparison with the number of operations (division) in
the LU-decomposition does not mean practically more
rapid solution to the problem, while the accumulation
of rounding errors during are computing the square
root is bigger than during the division operation [16].

If the solution to the problem is not restricted by any
conditions, it is equivalent to the problem of finding the
maximum eigenvalue of Rmax = λmax and correspond-
ing eigenvector ~u = ~emax of the real symmetric positive
(semi-) definite matrix B. Using the function EVCSF
of MATH library IMSL all eigenvalues and all eigen-
vectors of a real symmetric matrix can be found in [17],
[18] and [19].

If the components of the control are limited by any
conditions, then instead of the solution to the problem
of finding the eigenvectors and eigenvalues to determine
~u1, ~u2, . . . and R1, R2, . . ., we have to solve the corre-
sponding problem of constrained optimization. More-
over, for further analysis in addition to existing restric-
tions, the mutual orthogonality of different controls ~ui
and ~uj (eigenvectors of a real symmetric matrix are
orthogonal) may be required. It is expected that we
will be interested in a few first most effective controls
~u1, ~u2, . . . ~ui. This decision is made by the user. To
support the decision being made regarding the values
R1, R2, . . . Rk (R1 ≥ R2 ≥ . . . ≥ Rk), the parameters
(s2, s3, . . . , sk−1) are computed:

si = −Ri−1 + 2Ri −Ri+1. (17)

Sign change in the sequence si indicates the boundary
l: sl−1 < 0, sl > 0, sl+1 < 0. Other criteria can be
used as well. In order to find ~ui from solution of the
SLE, see Eq. (14), we define ~xi.

For each component of each selected control ~ui we
determine ensuring controllability index for the j-th
vertex:

v2i,j =
u2i,j

u2i,1 + u2i,2 + . . .+ u2i,n
, (18)

and for the components of the corresponding solution
~xi – effectiveness index for the j-th vertex:

r2i,j =
x2i,j

x2i,1 + x2i,2 + . . .+ x2i,n
, (19)

that are then in descending order. The decision on the
selection of the most effective components is made by
the user. To support the decision the above described
or other criteria can be used.

The following Alg. (1) for finding components of
effective controls implements the actions mentioned
above.

Algorithm 1 Algorithm of effective controls.
Require: A - adjacency matrix, δ - decrement, ε -

stopping treshold u0 = (1 1 ···1)T .
Ensure: ~u1,··· , ~ul - vectors of optimal control,

R1,··· , Rl - max objective function R,
~x1,··· , ~xl - vectors of indices growth associated with
the vertices,
v21,1,··· , v

2
l,n - ensuring controllability index,

r21,1,··· , r
2
l,n - effectiveness index.

1: compute the matrix Z← E− δAA
2: solve the n systems of linear algebraic equations

F← (ZTZ)−1AT

3: compute matrix of quadratic form B← AF
4: k ← 0
5: repeat
6: Gram-Schmidt orthogonalization process [16]

~̂u← ~u0 −
∑k
i=1(~ui, ~u0)~ui

7: repeat
8: update vector ~u← ~̂u
9: compute vector norm R← ‖~u‖

10: compute vector ~̂u← B~u/R
11: Gram-Schmidt orthogonalization process

~̂u← ~̂u−
∑k
i=1(~ui, ~̂u)~ui

12: until ‖û− u‖ < ε
13: k ← k + 1
14: normalize vector ~uk ← ~u/R
15: until k ≥ l
16: for i: = 1 to n do
17: solve a system of linear algebraic equations

~xi ← (ZT )−1AT~ui

18: compute vector norm ‖~xi‖ ←
√∑n

j=1 x
2
i,j

19: for i := 1 to n do
20: compute v2i,j ← u2i,j/Ri; r

2
i,j ← x2i,j/ ‖~xi‖

21: end for
22: Sort v2i,j so that v2i,j(1) ≥ v

2
i,j(2) · · · v

2
i,j(n)

23: Sort r2i,j so that r2i,j[1] ≥ r
2
i,j[2] · · · r

2
i,j[n]

24: end for
25: return ~u1,··· , ~ul; R1,··· , Rl;

~x1,··· , ~xl; v21,1,··· , v2l,n; r
2
1,1,··· , r

2
l,n.
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3.3. Metrics of the Vertices on the
Basis of the Theory of Effective
Controls

On the basis of the above-described algorithm, we con-
sider the proposed metrics of vertices characterizing
the measure of effective controls.

Definition 1. Iri,j - Growth index - parameter of the
growth of model factor corresponding to the j-th vertex
of the graph under the directive impact Iai in general.

Growth index Iri,j jth vertex under the ith impact
is defined as the solution of SLE, see Eq. (14):

(E− δATAT )Iri,j = AT Iai,j , (20)

where δ is the damping factor, A is the adjacency ma-
trix of the graph G, and Iai,j is the control index.

Definition 2. Iai,j- Control index - coefficient, with
which the index of j th vertex of the graph participates
in the directive control.

Control index Iai,j is found as a result of solving the
optimization problem Eq. (16):

R =
‖Iri,j‖2

‖Iai,j‖2

=
((E−δATAT )−1AT Iai,j ,(E−δATAT )−1AT Iai,j)

(Iai,j ,Iai,j)

=
(BIai,j , Iai,j)

(Iai,j , Iai,j)
→ max, (21)

where B = A(E − δAA)−1(E − δATAT )−1AT =
A(ZTZ)−1AT is the symmetric positive (semi-) defi-
nite matrix; Z = E− δAA.

Definition 3. r2i,j- Effectiveness index the fraction of
conformity of growth vector ~xi alignment selected by
the component corresponding to the j th vertex.

Effectiveness index is are computed by the Eq. (19)
as the ratio of the square of the j-th component of the
growth vector ~xi to the sum of the squares of all the
components of the growth vector ~xi:

r2i,j =
x2i,j

x2i,1 + x2i,2 + ...+ x2i,n
. (22)

Definition 4. v2i,j- Ensuring controllability index - the
fraction of conformity of control vector ~uidue to the
index of j-th vertex.

Ensuring controllability index is are computed by the
Eq. (18) as the ratio of the square of the j-th component
of the control vector ~xi to the sum of the squares of all
the components of the control vector ~ui:

v2i,j =
u2i,j

u2i,1 + u2i,2 + ...+ u2i,n
. (23)

4. Experiment

Consider the procedure of finding the productive com-
ponents of effective controls on the example of the cog-
nitive model as a directed weighted graph with cause-
and-effect relationships, represented by the adjacency
matrix of dimension 75×75 with 411 arcs and their to-
tal weight 216.5 [20].

An attempt of clustering by minimizing the
quadratic functional led to next result – all vertices
form a single cluster. Trying to identify the order-
ing relationship of order in the graph and to raise the
question of exclusion of the arcs, which form cycles,
led to the necessity to remove about a quarter of the
arcs, which distort the essence of the graph. The inten-
tion to compute the mutual influences of the vertices to
each other in terms of the existence of multiple cycles
leads to the need for an introduction of damping factor,
while the influence will be determined from the SLE.
SLE appears to be ill-conditioned, but solvable even
if the value of the damping factor δ = 1. It was also
found that the resonance properties of the SLE ma-
trix, see Eq. (10), determine that the eigenvalues and
eigenvectors are complex. However, due to the fact
that the elements of the matrix and the right part of
the SLE are real numbers, eigenvalues and eigenvectors
of the matrix form a complex conjugate pairs. Never-
theless, interpretation of economic indicators expressed
by complex numbers is challenging. Therefore, we con-
sider the optimization problem, which has a real solu-
tion. Solution Eq. (16) is not problematic except that
the condition number of matrix 75×75 reach ∼ 1015.
The results of computation of the components of the
eigenvector u1 of matrix B (paragraph 5-15 of Alg. (1),
are presented in Tab. 1 (sorted in descending order).

Solution of SLE, see Eq. (14), (paragraph 16-18 of
Alg. 1) is presented in the Tab. 2 (sorted in descending
order).

After determining the first main direction ~ui, the
contribution of each individual parameter was defined
corresponding to the vertex of the graph, to every sin-
gle vector component of the computed parameters ~xi,
i.e. it was decided to compute the elements of the in-
verse matrix. The resulting matrix with a very high
accuracy coincides with the dyadic product of two vec-
tors for SLE, see Eq. (14):

(E− δATAT )−1A ≈ x̃ · ũT . (24)

For the optimization problem Eq. (16):

B ≈ (~u · ~xT ) · (~x · ~uT ) = ~u ·Rmax · ~uT . (25)

That is, the matrix rows differ from each other only
by a multiplier associated with the row of the matrix
and the columns of the matrix are also different from
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Tab. 1: The values of the vector components ~u1, corresponding
to the vertices vi.

vn u1j vn u1j vn u1j

5 0.2528038 29 0.05987265 16 -0.03436201
12 0.2526091 14 0.05542509 35 -0.03447989
39 0.2101528 43 0.05301107 36 -0.03983346
34 0.2099352 13 0.04879709 64 -0.04155279
11 0.2008675 32 0.04752683 68 -0.04254057
2 0.1876696 44 0.04523298 52 -0.04260134
75 0.1657376 27 0.03099309 10 -0.04923852
38 0.158184 59 0.02701188 40 -0.05052563
1 0.1547691 56 0.02440797 65 -0.06068351
54 0.1475701 63 0.01614966 72 -0.07647701
25 0.1447973 60 0.01389593 4 -0.08341967
6 0.1424852 26 0.01282121 23 -0.0835738
50 0.1195439 57 0.01074903 15 -0.09434044
55 0.111834 17 0.009989827 31 -0.1069596
20 0.09923731 8 0.007004421 7 -0.1195215
47 0.09516039 21 0 30 -0.1223333
37 0.0935998 28 0 46 -0.1252972
45 0.09050892 51 0 48 -0.1402221
69 0.08868004 70 -0.002065489 42 -0.1831398
9 0.08566853 71 -0.002968655 22 -0.1919131
41 0.08098736 74 -0.004202652 19 -0.1935265
67 0.07589548 61 -0.007046627 3 -0.1951359
18 0.07455603 33 -0.02530296 66 -0.220606
58 0.0739199 73 -0.03073383 49 -0.2269727
62 0.06634766 53 -0.03408115 24 -0.2691427

Fig. 1: Collinearity of vectors, expressed by ordered compo-
nents of the rows of the matrix of dyadic product.

each other only by a multiplier associated with a col-
umn. If the elements of rows or elements of columns
are drawn graphically, they will represent a family of
broken lines similar to each other up to a scale multi-
plier. A better visual representation is obtained if we
pre-arrange the elements of rows or columns (note that
due to the strong collinearity they acquire the same or-
der) (Fig. 1).

Figure 1 shows the corresponding picture of the or-
dering in descending manner for the row of dyadic
product (a similar picture for the columns), moreover
it coincides with the ordered descending components
of solution (Fig. 2). After that, it was decided to de-
termine the subsequent eigenvalues.

Tab. 2: The values of the vector components ~x1, corresponding
to the vertices vi, for control ~u1.

vn u1j vn u1j vn u1j

37 208.0518 34 5.794519 28 -10.2296
47 183.2326 14 5.574492 70 -10.8209
51 163.3114 12 4.614484 22 -11.8735
41 148.3645 8 4.193422 32 -12.0834
26 102.8048 42 2.408943 48 -12.721
25 94.21774 24 1.916675 3 -15.9206
30 91.09594 56 1.110261 49 -17.279
75 86.72815 20 0.548213 7 -18.1356
52 78.78956 66 0.083993 23 -23.5826
50 67.93214 72 0.028935 38 -27.4331
27 66.40107 61 0.02748 44 -38.3505
39 48.42215 65 0.022907 35 -38.5159
36 44.63304 64 0.01561 6 -39.4433
1 32.46423 73 0.011676 21 -39.5259
31 27.01683 74 0.001598 18 -39.5922
40 21.58144 71 0.000984 15 -40.2072
57 14.47225 63 -0.00615 17 -47.0725
11 12.33464 13 -0.01818 54 -52.3909
68 11.62518 29 -0.02245 53 -53.2926
5 10.83454 67 -0.0286 46 -67.0565
10 10.48386 16 -1.98022 60 -73.45
62 10.04127 9 -3.08709 4 -73.7708
59 9.481671 33 -3.47675 58 -80.345
2 7.127377 69 -6.55189 43 -87.569
19 6.409531 55 -7.77439 45 -120.328

Fig. 2: Sorting of the values R1, R2, . . . , Rn (without consider-
ing the maximum eigenvalue).

It turns out that if we interpret the matrix of the
quadratic form as the covariance matrix, the operation
of the system is determined by one leading development
direction, which greatly prevails over the other. This
explains why communities were not allocated in the
graph on the basis of minimizing the quadratic func-
tional.

Sorting of the values R1, R2, . . . , Rn shows a signif-
icant gap of the first vector from the second (3 · 103).
From the structure of the matrix Eq. (24), it follows
that strong interrelation of parameters action on any
of them leads to the same vector of growth, however
with different scales. Then we only need to select the
one controllable parameter (maximum). For more ef-
fective control we decided to select three parameters,
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which are apart from the others (Fig. 3(a), Tab. 3).
Figure 3(b) shows the effect of the accumulation of en-
suring controllability index v2i,j .

(a) Ensuring controllability index ordering.

(b) Integral representation of Ensuring controllability index.

Fig. 3: Ensuring controllability index v2i,j .

Tab. 3: Selected vertices and their corresponding components
of Ensuring controllability index.

xl v2
i,j Integral v2

i,j

x24 0.072438 0.072438
x5 0.06391 0.136348
x12 0.063811 0.200159

Ordered components of the growth vector of index
~xi are presented in Fig. 4. Impact on any parameter
(vertex) leads to this growth vector but with its own
scale. Descending components of this vector can be
interpreted as the increase of the determination coef-
ficient. Thus, the increase of the determination coef-
ficient to values above 0.5 is provided by the first few
components.

Figure 5(a) shows the corresponding Effectiveness in-
dexes, and Fig. 5(b) - their integral representation.

The first four components provide more than 50 %
of the maximum growth (Tab. 4).

Summarizing, the presented result expresses the
choice of effective controls for the socio-economic sys-
tem, provided by the cognitive model.

Fig. 4: Ordered components of the growth vector of index xi.

Tab. 4: Selected vertices and corresponding components of Ef-
fectiveness index.

xl r2
i,j Integral r2

i,j

x37 0,174729 0,174729
x47 0,135527 0,310256
x51 0,10766 0,417916
x41 0,088855 0,506771

5. Discussion of the Results

Five different criteria for the evaluation of our approach
may be applied:

1) Applicability in the Subject Area

The conducted study had shown the applicability of the
developed approach based on the systems theory for
the analysis of directed signed weighted graphs with
cause-and-effect relationships, which represent cogni-
tive models in social and economic systems

2) Feasibility

SLE solutions are uniquely solvable, because the ma-
trix (ZTZ) is positive semidefinite by its construction
and can be made a strictly positive definite, and thus
a non-degenerate by choosing the decrement δ. The
feasibility of the solution to an optimization problem
for a relationship of the squares of norms follows from
the convergence of the corresponding iterative pro-
cesses. The non-degeneracy of the matrix SLE, see
Eq. (14), is provided by a choice of the damping factor
δ.

3) Format of the Results

As a result of the applied algorithm the selection of
effective components and the corresponding effective
significant impacts, which represent key vertices that
display overall system, is carried out. The quantity of
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(a) Effectiveness index ordering.

(b) Integral representation of Effectiveness index.

Fig. 5: Effectiveness index r2i,j .

the obtained vertices is reduced to a reasonable number
of vertices and arcs that allows to reach an acceptable
level of information obtained by the graph model for
an expert (decision maker).

4) Difficulty and Complexity of the Solution

Solution time of algorithm takes a fraction of a sec-
ond. The computational complexity of the algorithm
is O(n3) of arithmetic operations.

5) Quality

The quality of the results provided by the possibility
of conversion of solving problems to the systems with
symmetric matrices, to which the convergence of the
corresponding iterative processes is proven.

6. Conclusion

The proposed method of maximizing the spread of
influence in models of socio-economic systems, which
can be presented with directed signed weighted cyclic
graphs with cause-and-effect relationships, is a reliable

solution for the development of practical applications
of expert systems and knowledge based systems. So-
lutions based on the theory of effective controls can
be applied to many optimization problems in the de-
velopment of intelligent systems. Our method can re-
duce management costs under the conditions of limited
opportunities through optimal choice of accompanying
impacts without loss of the key factors.

Maximization of a sign-definiteness quadratic form
is the key step in the search for the optimal control
that ensures the validity of the solution (the existence,
possibility and uniqueness of the solutions), computa-
tion in a real, rather than in the complex domain, and
independence from the conditions of stability.

Development of Algorithm of effective controls is not
trivial problem in the new context, as we have changed
the formulation of the optimal control problem itself.
The vector of control impacts ~u is determined from
solving the optimization problem of maximizing the
objective function. This approach differs from the tra-
ditional solutions, in which the growth vector of ver-
tices characteristics ~x is defined by the known vector of
control impacts ~u from solving the SLE, see Eq. (10).
The method is applicable for a directed signed weighted
graph with cause-and-effect relationships. Notably,
this approach does not impose requirements for graphs
to order relationship or to have a matrix of a special
kind. Moreover, fulfilment of the stability conditions
are not required.

Many important directions remain for future work.
Statement of the problem can be generalized to con-
strained optimization, i.e. solutions satisfying certain
restrictions. However, as the directions that differ only
by the factor represent the same direction, the restric-
tions should not express the conditions for the com-
ponents of the desired vectors, but belong to some un-
known vector (linear) manifold which is generated by a
given set of vectors. A promising area could be the ex-
pansion of the concept of equivalence of the graph (the
conditional equivalence). Application of the theory of
effective controls, based on the provisions of the gen-
eral systems theory and systems analysis in the annex
to the management in socio-economic systems, allows
to identify the components of productive fuzzy cogni-
tive model of the system and transform them into a
graph of conditional equivalence.
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