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Abstract. The paper deals with an empirical mathe-
matical model serving for the time evolution of post-
operative blood perfusion in burn wounds developed in
the setting of surgical treatment of full thickness, or
non-healing deep dermal burns involving application
of Split Thickness Skin Grafts (STSG), and Autolo-
gous Platelet Concentrate (APC), with the main goal
of early assessment enhancement and healing prognosis
of burns. Numerical parameters of the model including
a 95 % confidence level prediction interval were deter-
mined using the nonlinear fit procedure. We cautiously
claim that the suggested model could serve as a ben-
eficial tool in objective comparisons of treatment effi-
cacy and facilitating the decision making process. How-
ever, reliably determined model parameters still require
a large amount of laser Doppler imaging data to be
processed for individual kinds of treatment.
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1. Introduction

Although Laser Doppler Imaging (LDI) has been en-
trenched and almost ubiquitous in burns diagnostics
since it first became available, one can observe per-
sistent striving for new means of LDI data processing
which would be able to contribute additional benefits,
improve the result accuracy and reliability, set forward
objective comparison of treatment efficiency [1], [2], [3],
[4], [5] and facilitate local treatment strategy decision
making [6], [7] and [8]. The aforementioned reasons,
together with increasing emphasis placed on outcomes
following treatment of deep dermal and particularly full

thickness burns, which are undergone to surgical treat-
ment, delivered the main impetus for the development
of a novel tool and inspired the idea of its advantageous
embodiment into a simple yet powerful mathematical
model of post-operative perfusion time evolution with
the aim of refining both instantaneous burn assessment
and burn healing prognosis [9], [10] and [11].

As a background and source of data for setting up
the mathematical model, an ongoing research of sur-
gical intervention involving application of autologous
platelet concentrate and Split Thickness Skin Grafts
(STSG) was adopted. Autologous Platelet Concen-
trate (APC) is plasma with a concentration of blood
platelets elevated above baseline [10], [12], [13] and [14].

2. Methods

The study protocol was reviewed and approved by the
Institutional Review Board of the University Hospital
Ostrava. All patients were fully informed about the
study, and gave informed consent to the treatment and
the subsequent measurements.

The study presented is a non-randomized prospec-
tive monocentric data analysis based on objective test-
ing of outcomes of surgery on deep burns. All proce-
dures involved in the study were carried out by the ob-
jective measurement of blood perfusion using the laser
Doppler imaging technique (see Ref. [15] and references
therein).

2.1. Patient Criteria

From March, 2009, to November, 2012, a total of 27
patients (15 men and 12 women) underwent surgical
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treatment of full thickness and non-healing deep der-
mal burns with application of STSG and APC.

The criteria for including the particular patient were
as follows:

• an adult patient (at least 18 years of age) with full
thickness burns and/or non-healing deep dermal
burns,

• a patient who signed the informed consent form
prior to participation,

• absence of hematological malignancies, chronic re-
nal failure, inborn thrombocytopenia, current in-
take of oral anticoagulants, platelet aggregation
inhibitors or abnormal bleeding history.

2.2. Material and Instrumentation

The APC and autologous thrombin were prepared by
density gradient centrifugation of patient’s peripheral
venous blood collected using standard venipuncture
techniques, most frequently from an upper extremity
peripheral vein using the Harvest SmartPReP Platelet
Concentrate System (Harvest Technologies Corpora-
tion, Plymouth, MA, USA). The blood was collected
before the commencement of surgery, the APC prepa-
ration and necrectomy of the thermally destroyed skin
proceeded simultaneously. The blood was centrifuged
in accordance with the manufacturer’s recommenda-
tions.

The necrotic area was then grafted with STSG. Upon
application of APC on STSG-transplanted areas and
activation of thrombocytes by autologous thrombin,
the platelet α-granules granulated releasing growth fac-
tors acting as healing stimulants [16]. The entire pro-
cess was carried out under strict sterile conditions in
the operating room, simultaneously with the surgery.

For evaluation of blood perfusion in early phases (less
than 14 days after the surgery), the PeriScan PIM 3
LDI scanner by Perimed AB, taking advantage of the
principles of laser Doppler imaging, was used [17], [18],
[19] and [20]. The system was accompanied with re-
spective software LDPIwin 3.1 supplied along with the
hardware. Figure 1 shows the freehand thick white
closed curves defining the RoIs were drawn with regard
to a reasonable representation of the burn areas yet to
keep clear of the inflammatory periphery which would
introduce falsely elevated perfusion values. The mean
perfusion within the area encircled by the curve was
figured out using the LDPIwin 3.1 program. (These
grayscale images were converted from the LDPIwin 3.1
program’s original color-coded images using a utility
written in the system Mathematica.

Fig. 1: An example of a region of interest (RoI) selection.

2.3. Perfusion Data Acquisition

Laser Doppler scanning was carried out during each
dressing change, first before the surgery, subsequently
on every even Post-Operative Day (POD), starting on
the 2nd and ending on 14th day.

All scans were conducted according to the same pre-
set protocol: on each patient at the same time of day,
in the same examination room with controlled room
temperature between 22–24 ◦C and relative humidity
of 50 % ± 10 %. The ambient light conditions were en-
sured to comply with the recommendation of the scan-
ner manufacturer [21], and the device was calibrated
regularly using the calibrating phantoms. All patients
were inactive for a period of 15 minutes, and were al-
ways examined in the same position. The patients were
asked to remain at rest to prevent movement artifacts.
The scanning head was adjusted to a distance of 15–
20 cm (about 6–8 in) from the examined area, the axis
of the measuring head was being set as perpendicular
to the skin surface as possible. The scanner settings
were recorded and saved for future reference.

The resulting 2D perfusion maps were preprocessed
using the LDPIwin 3.1 program as illustrated in Fig. 1.
All operators introduce idiosyncratic errors, in order to
avoid varying errors caused by the operator.

Due to the demands of clinical situations, only 9 pa-
tients out of a total 27 passed through all seven sched-
uled measurements. Consequently, some datasets are
incomplete the only complete ones are from PODs 6, 8
and 14.

3. Results

3.1. Convectional Statistical
Analysis

Seven perfusion datasets from consecutive post-
operative days 2, 4,...,14 were primarily undergone to

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 64



BIOMEDICAL ENGINEERING VOLUME: 15 | NUMBER: 1 | 2017 | MARCH

conventional statistical analysis with the particular in-
tention to lift the veil off its pitfalls. All statistics (in-
cluding the modeling approach calculations to be dis-
cussed later) were carried out using the system Math-
ematica [22] and [23], a significance level of 5 % was
adopted.

The datasets were tested for normality and equal
variances. The null hypotheses that the datasets were
drawn from a normally distributed population, and
that the datasets had equal variances, were found un-
likely and could not be retained. Thus, the datasets
failed to meet basic pretest assumptions of parametric
multi-comparison testing [24].

We run into problems, however, with independence
because the datasets are generally of different sizes.
Three approaches to tackle the problem could be
adopted:

• taking into account completely measured patients
only,

• using linear regression substitution for missing
perfusion data,

• performing post-hoc regression substitution for
missing perfusion data using the model developed
for and applied to individual cases.

Neither of approaches 2 nor 3 is exactly “missing data
imputation” in the sense used by, e.g., Ref. [9], but
for brevity we retain the term hereinafter. While the
number of complete datasets drops down to 3 (with
the number of patients measured in all 7 days being 9),
using imputation enables the full number of datasets to
enter the independence tests at the cost of imputation-
introduced bias.

Testing under the first approach retained the null hy-
pothesis that no association exists for any of 21 dataset
pairs. Testing using the same tests under the sec-
ond approach led to independence refusal by at least
three tests in nine pairs of POD. The situation did not
change much when testing under the third approach,
although it takes advantage of a more exact regression
model, independence was refused by at least three tests
for seven pairs.

Taking the above findings into account, a base 10
logarithmic transformation was applied to approximate
the normal distribution more precisely. Transforma-
tion is also a good remedy for heteroscedastic datasets
and their grossly positive skew.

Repeated testing for normality revealed that p-values
of all tests in all post-operative days do not drop below
0.11 (with typical value above 0.4), the distributions
of original data can be deemed log-normal. Testing
for equal variances does not reject the null hypothesis

Fig. 2: The box-and-whisker chart for logarithmically trans-
formed perfusion in seven PODs examined. The thin
white lines indicate medians, short thick ticks indicate
means and circles mark outliers.

that the datasets have equal variances. In the follow-
ing, transformed data will exclusively be used without
explicit emphasis.

Figure 2 shows graphically expressed results of the
conventional statistical analysis of transformed perfu-
sion data. It can easily be observed that both perfusion
medians and means monotonically decrease through
2nd to 8th post-operative days, reaching stagnation
value in the remaining days, perhaps with the excep-
tion of POD 14. The most expressed dynamics is no-
ticeable in early post-operative stages, as might be ex-
pected.

Based on pretests for normality and homoscedastic-
ity results, the transformed perfusion data are qualified
for testing for equal means or medians in individual
postoperative days. A single factor analysis of variance
(ANOVA) was performed on the data resulting in p =
0.00025. Subsequent post hoc tests indicated signifi-
cant difference in the following pairs of post-operative
days: (2, 8), (2, 10), (2, 12), (2, 14), and (4, 14).

Because of problematic independence of datasets,
imputed data were tested using Friedman rank test
for paired data. For both linear and post-hoc model
regression imputation, the results induced rejection of
means equality (the p-value was of order 10−10 or less).
Subsequent post-hoc testing indicating significant dif-
ferences in the following pairs in addition to those re-
vealed by ANOVA post hoc tests: (4, 6), (4, 8), (4, 10),
(4, 12), and (4, 16).

3.2. Building the Model

Let us remind that, as shown in Fig. 2, the perfusion
means and medians monotonically decrease from 2nd to
8th post-operative days, reaching stagnation value af-
ter that. Consequently, in order to capture the nature
of the perfusion behavior, we can exclude polynomials
of arbitrary nonzero order (including of linear) as the
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model function, since they diverge to plus/minus infin-
ity for large time. The simplest and most natural way
of portraying the perfusion drop features is provided
by the exponential formula:

P (t) = Ps + P0e
−λt, (1)

where t denotes time (in units of days) elapsed since
surgery, Ps stands for the steady perfusion value for
large time t, P0 is the difference between (hypotheti-
cal) elevated perfusion value at t = 0 and the steady
state (in other words, Ps + P0 is the perfusion value
at t = 0), and λ is another parameter expressing the
rate of restoration toward the steady state. Exponen-
tial formulas like Eq. (1) are characteristic of a broad
class of natural processes which are gradually steered
to a steady, unchanging state. Qualitative behavior of
such model is shown by the leftmost panel in Fig. 3.
Denoting

D(t) ≡ P (t)− Ps and Ṗ ≡
dP

dt
, (2)

the difference between the immediate perfusion and the
steady state perfusion value, and the rate of return to
steady state, respectively, a simple property of Eq. (1)
implies Ṗ = −λD, i.e., the immediate rate of return
is proportional to the immediate excess of perfusion
above the steady value. The absolute value of the rate
of return P reaches its maximum at the very beginning,
t = 0, and converges to zero for late post-operative
days,

∣∣∣Ṗ (0)∣∣∣ = λP0 ≥
∣∣∣Ṗ (t)∣∣∣ , Ṗ (∞) = 0.

This behavior is illustrated in the leftmost panel of
Fig. 3 by the downward tilted dashed tangent. The
constant λ can be referred to as “recovery constant”
related to a more suitable characteristics of the decay -
the recovery halftime – by the formula T1/2 = 0.693/λ.
The meaning of the recovery halftime is that its every
elapse reduces the difference D in half. Of course, the
model need not be taken seriously for time from t = 0
(surgery day, POD 0) to t = 2 (POD 2).

Nonlinear regression analysis using the model Eq. (1)
applied on the transformed data indicated that deter-
mination of the key coefficient λ is statistically insignif-
icant, yielding p-value above 0.05 for its estimation, or,
stated otherwise, its interval of confidence contains zero
(see the rightmost panel in Fig. 4). This leads to a pro-
posal to modify the model Eq. (1) by introducing an
exponent γ > 1 as follows,

P (t) = Ps + P0e
−λtγ . (3)

Figure 3 shows reasoning for the model selec-
tion. Purely exponential function P (t) describing
the restorative process displayed in the leftmost panel
shows the steepest gradient at the very beginning (t =
0), i.e. the tangent (dashed arrow) has γ the most neg-
ative slope at that point. For any γ > 1 the function

Fig. 3: Quantitative demonstration of parameter γ.

P (t) brings an essential change in its behavior, turning
the initial tangent to the horizontal direction. With the
parameter γ rising (while keeping the other parameters
constant), an increasingly apparent plateau, delaying
the decline to a later phase, is progressively formed.
This is however compensated by expediting the sub-
sequent decrease and by earlier establishing a steady
state. These features (which bestowed the name “sus-
pended/expedited Gaussian recovery” upon the model)
are qualitatively demonstrated in the remaining three
panels for γ = 4/3, 3/2, 2 and 2.5, respectively. The
shaded area delimited by the curve, perfusion ordinate,
and line at the steady state level parallel to the ab-
scissa, is proportional to the excess of total number of
blood elements pervaded into the wound per unit area
during entire healing period.

Figure 4 shows incrementing the parameter γ by 0.1
from 1.0 to 3.0 (and adding some extra values of small
integers ratio like 6/5, 5/4, 4/3, 5/3, 7/4), a nonlin-
ear regression using Levenberg–Marquardt method was
carried out for fitting model parameters on transformed
perfusion data. The panels show the dependence of the
p-values for parameters Ps, P0 and λ (from left to right)
on γ. While the dependence of p-value of Ps and P0

is monotonically decreasing, the p-value for parameter
(λ) minimizes at (γ) equal to 2.0 or very close to 2.0.
But this means that at that value the 95 % confidence
interval minimizes its width. Best fit in the sense of
minimized p-value of the most critical parameter λ was
achieved for γ = 2, as shown in the rightmost panel.

Fig. 4: Modeling of the p-values for parameters Ps, P0 and λ
(from left to right) on γ.

Figure 5 shows the points representing the deviations
(residuals) of transformed perfusion values from those
predicted by the best fit parameters of model Eq. (4).
The residuals are evenly distributed for all values and
show no perceptible trend.
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Fig. 5: Analysis of residuals.

The qualitative properties of this model are similar
to those of Eq. (1) with the exception that the initial
drop rate vanishes, Ṗ (0) = Ṗ (∞) = 0.

The effect of the new parameter γ > 1 is demon-
strated in Fig. 3. While for γ = 1 the tangent at the
initial point is pointing askew, for γ > 1 the initial tan-
gent is always horizontal, developing small plateau in
the vicinity of the origin. The larger γ is, the more the
plateau extends to the right. The delay in decrease is
then compensated by expedited drop and quicker set-
tling on a flat steady state level.

Let us now dwell on developing the model based
on Eq. (3). The nonlinear Levenberg––Marquardt re-
gression method was used for fitting the model pa-
rameters on transformed perfusion data. Technically,
the regression makes use of the fact that the model
log10 P (t) = log10(Ps+P0e

−λtγ ) takes advantage of fa-
vorable properties of transformed data. The fitted pa-
rameters were Ps, P0 and λ, while an ansatz was used
for the exponent γ incremented by step of 0.1 from 1.0
until 3.0. The best fit, the results of which are sum-
marized in Tab. 1 and Fig. 3, was achieved for γ = 2
(details are explained in figure caption) with adjusted
coefficient of determination R2 = 0.986.

Tab. 1: Results of regression analysis on the model Eq. (1).
The 68 % (95 %) confidence interval corresponds to
≈ 1σ (2σ) departure from the best-fit estimate. The
adjusted coefficient of determination is R2 = 0.986.

Para
meter

Estimate
(std

uncertainty
p-value 68 % CI 95 % CI

Ps 91.0 (7.8) 2.2 · 10−23 (83.2,
98.8)

(75.6,
106.4)

P0 98.1 (25.0) 1.2 · 10−4 (73, 123) (49, 147)

λ 0.030 (14) 0.031 (0.016,
0.044)

(0.0028,
0.057)

Finally, the results were verified by means of anal-
ysis of residuals. The residuals in Fig. 5 show no
perceptible trend. Testing for normality using An-
derson–Darling, Shapiro–Wilk and Jarque–Bera ALM

tests yields p-values 0.34, 0.43 and 0.77, respectively,
so the normality of residuals has to be retained. More-
over, the Student t-test effectively yields p = 1 (sic!,
the value of the t-statistic −2.53 · 10−15) for the hy-
pothesis that the residuals mean equals to zero. Thus,
the model Eq. (3) with γ = 2,

P (t) = Ps + P0e
−λt2 , (4)

appears to be highly compliant to the data under in-
vestigation.

There are, however, some points worth clarifying.
The model function Eq. (4), rewritten here for conve-
nience with numerical best-fit results substituted from
Tab. 1

P (t) = 91.0 + 98.1e−0.030t
2

, (5)

seems to provide reasonable foundation for process-
ing of the perfusion data collected in the way de-
scribed. Looking at the graphic representation of
formula Eq. (5) in Fig. 6(a) (confidence level 95 %)
and Fig. 6(b) (confidence level 68 % corresponding
to standard deviation ≈ 1σ), the perfusion drop is
clearly manifested up to roughly 10th post-operative
day. Starting from POD 12 the steady state 91 PU
is virtually reached. For comparison, the results for

(a)

(b)

Fig. 6: The result of perfusion time evolution nonlinear fit.
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POD 30 are marked with a circled dot - it is located at
the borderline of the 95 % dark gray model reliability
band, but it has nothing to do with the prediction of
a single perfusion value, which is marked by the light
gray prediction band.

There are some points that distinguish the model
described by Eq. (4) from that described by Eq. (1).
While the latter permits the perfusion to drop from the
very initial time (immediately after the surgery), the
former delays the drop for a while at the beginning,
as if the perfusion drop was inhibited by an unknown
factor that later vanishes, replacing delay by hastened
decrease (cf. Fig. 3). It should be admitted that the
nature of that lag remains undisclosed. One need not
to take a grave view of the model prediction for time
between t = 0 (surgery day, POD 0) and t = 2 (POD
2). On the other hand, within the interval of moni-
toring (starting from the first post-surgery month) it
is capable to reflect the real progress of healing pro-
cess reasonably. The early perfusion plateau predicted
by the model can be an artifact resulting from the fact
that the model fails in description of the perfusion evo-
lution in early stages after the surgery (although it may
be fairly good approximation from POD 2 to 14), or
it can harbor rudiment of still concealed phenomenon.
However, it is too early for such a complex issue to be
judged – but provided Eq. (4) turns out to model the
perfusion reasonably from POD 2 on, the early behav-
ior surely deserves further investigation.

Interestingly, there is another theoretical aspect to
be emphasized. The rate of return to steady state
Eq. (2) for model dependence Eq. (4) reads Ṗ =
−2λtD.

Figure 6 shows the result of perfusion time evolu-
tion nonlinear fit. The perfusion axis uses logarithmic
scale. Model Eq. (4) was used with parameters Ps,
P0 and λ (the meaning of individual parameter is ex-
plained in text). Large black points represent mean
values of transformed perfusion in post-operative days,
small gray points represent individual transformed per-
fusion values (horizontal random dispersion is deliber-
ately introduced to prevent overlapping of close val-
ues). The 95 % prediction band of reliability for future
measurements is in light gray, white curve in the mid-
dle represents the best fit, with a dark gray 95 % model
reliability band alongside. The vertical lines indicate
the critical recovery time tc and its uncertainty. The
circled dot shows the position of the perfusion mean
on the 30th post-operative day. Figure 6(b) same as in
Fig. 6(a) but with 68 % prediction band of reliability
for future measurements (light gray) and model reli-
ability band (dark gray). The 95 % confidence level
is however retained for uncertainty of critical recovery
time tc, its narrowing resulting from change of relia-
bility band margins. (The value 68 % corresponds to
≈ 1σ interval of confidence.)

Although the model formula Eq. (4) was – and its
parameter γ = 2 in particular derived purely on empir-
ical basis, the recent formula offers a simple and plausi-
ble interpretation: the rate of decrease is proportional
both the difference between immediate and steady
state perfusion and the time elapsed from surgery. On
the other hand, this reasoning lacks deeper insight and
theoretical background. We present it here mainly for
completeness and as an initiative for further research.

The conformity of the model is at the expense of the
concept of recovery halftime indeed, the parameter γ >
1 causes gradual decrease in subsequent “halftimes.”
However, remembering the nature of perfusion, even
better estimation of recovery time can be introduced:
the left-hand side denominator of

tc∫
0

D(t)dt

∞∫
0

D(t)dt

= Lc, (6)

expresses the excess area between the perfusion curve
and the steady state horizontal exhausting entire light
gray plus dark gray area under the curve in Fig. 6(a) is
a measure of total blood perfusion during healing per
unit area, while the numerator quantifies the same but
only up to certain critical “recovery time” tc. Compar-
ing their ratio, as shown in Eq. (6), to a suitable chosen
cutoff value Lc, typically Lc = 0.95, after some manip-
ulations using Eq. (2) and Eq. (4), we arrive to an ex-

plicit expression for the recovery time tc =
erf−1(Lc)√

λ
,

where erf−1 denotes inverse error function tabulated in
all standard references like [14] and [25]. For Lc = 0.95

this formula simplifies to tc =
1.386√
λ

.

The recovery time can be interpreted as the period
during which 95 % of total excess perfusion takes place.
Substituting the estimate of the parameter λ provides
tc = 8.0 days, which is value consistent with results
obtained using conventional statistical analysis. The
tc’s confidence interval was calculated numerically from
the marginal model curves; the results are shown in
Fig. 6(a) and Fig. 6(b) for parameter confidence level
95 % and 68 %, respectively.

4. Conclusion

We cautiously claim that the suggested model could
prove itself to be a beneficial tool in efficacy comparison
of treatments under research as well as in fast and reli-
able routine clinical evaluation of post-operative burn
condition, thus facilitating decision making. However,
reliably determined model parameters still require cre-
ation of a large LDI database to be processed sepa-
rately for various kinds of treatment, with the main
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aim of establishing reference bands for reliable detec-
tion of perfusion behavior, its probable extrapolation,
and subsequent decision. The early detection of devi-
ating perfusion (and/or its time change) implies a pos-
sibility of urgent healing measures in sufficiently early
phases when an increase of complications has not yet
been clinically manifested. The presented model pre-
dicts perfusion plateau in the very early stages after
surgery, however, future studies are needed for deeper
insight into its origin and biological role in burn heal-
ing.
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