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Abstract. The main contribution of the presented pa-
per is to investigate the influence of the Dielectric In-
homogeneity Factor on the electrical tree evolution in
solid dielectrics using cellular automata. We have a
sample of the XLPE which is located between needle-
to-plane electrodes under DC voltage. The electrical
tree emanates from the end of the needle in which the
electric stress attains a dielectric strength of the mate-
rial. At every time step, Laplace’s equation is solved to
calculate the potential distribution which changes ac-
cording to electrical tree development. Dynamic sim-
ulations clearly demonstrate the influence of the range
of the Dielectric Inhomogeneity Factor on the electrical
tree growth. Simulation results confirm the published
technical literature.
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1. Introduction

The Cross-linked Polyethylene (XLPE) is widely used
in medium and high voltage cables due to its excellent
characteristics such as high breakdown strength, low
dielectric permittivity, and low dielectric loss [1] and
[2].

Electrical treeing phenomenon is one of the princi-
pal reasons for failure and deterioration of the XLPE
dielectric. In this area, trees initiate from the regions
where the electric stress enhances due to many factors
such as protrusions in the high voltage electrode, ma-

terial inhomogeneity due to manufacturing defects and
presence of conducting particles or gas-filled cavities.
Therefore, inception and propagation of electrical tree
are accompanied by the Partial Discharge (PD) activ-
ity within developing dendrites [3], [4], [5], [6] and [7].
The phenomenon of treeing is initiated by the forma-
tion of micro-channels and completed by electrical tree
which deteriorates the cable.

To remind, the growth of electrical tree is a com-
plex mechanism that took a great deal of researches
and studies. In literature, many works are published
to analyze and clarify this phenomenon experimentally,
theoretically and by simulation. In this field, multiple
studies investigated the influence of the temperature,
distance between electrodes, impurities and frequency
on the behavior of the electrical tree in XLPE sam-
ples using different experimental technics [2], [3], [4],
[8], [9], [10], [11], [12], [13] and [14]. Other authors
have analysed both initiation and propagation mecha-
nisms of the electrical tree inside solid insulation from
experiment to theory [5], [15] and [16].

Many models are proposed to explain the forma-
tion mechanism and structures of trees in solid di-
electrics. The breakdown phenomenon based on the
fractal dimension is analysed in [17]. A non-lattice
three-dimensional model is created to simulate both
electrical tree growth and Partial Discharges (PD) ac-
tivity within the growing tree channels [16]. Other re-
searchers have presented the model which termed De-
terministic Discharge-Avalanche; which is determinis-
tic in concept and associates the branching with lo-
cal field fluctuations generated by the mechanism itself
[18].

The propagation of the electrical tree in solid di-
electrics is simulated in various cases with the aid of
Cellular Automata: the presence of voids, the existence
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of conducting or insulating particles and the influence
of spaces charges on the development of dendrites [19],
[20], [21] and [22]. Unfortunately, these previous refer-
ences do not discuss the effect of the Dielectric Inho-
mogeneity Factor’s (DIF) range.

Taking advantage of this fact, this paper is focused
on the effect of the DIF’s range variation on the elec-
trical tree formation inside the XLPE, which is located
between needle-to-plane electrodes (see Fig. 1). The
study is based on the inherent inhomogeneity of the
dielectric which gives a significant fluctuation on the
electric field value. Dynamical simulations (using Cel-
lular Automata (CA)) are presented to demonstrate
practical potential of the proposed approach.
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are presented to demonstrate practical potential of the 
proposed approach. 

Fig. 1: The point/plane electrode arrangement, the white area 
corresponds to the solid dielectric and black areas correspond to the 
electrodes. 

2. Cellular automata

The behavior of a physical system is not determined only 
by macroscopic parameters. The important aspects of the 
microscopic laws of physics are a great challenge for 
anyone who tries to simulate physical system. Cellular 
automata (CA) are an idealization of dynamic systems 
where space, time, and variables are discrete and 
interactions are only local [23], [24]. CA are first 
introduced by John von Neumann in the late 1940s [25], 
[26]. It has been used extensively to model natural 
phenomena and complex systems [27]. Despite the 
simplicity of its structure, it is able to describe the 
behavior of the complex physical system. Jon Conway in 
1970, and Stephen Wolfram in the beginning of the 80's 
have developed architecture of CA, the former proposed 
what is called “Game of Life” and the latter studied in 
much detail a family of simple one-dimensional CA rules, 
known as: Wolfram rules [28].    

More precisely, CA consists of a regular uniform n-
dimensional matrix. At each site of the matrix (cell), a 
physical quantity takes values. This physical quantity is 
the global state of the CA, and the value of this quantity 
at each cell is the local state of this cell. Each cell is 
restricted only to local neighborhood interaction, and as a 
result, it is incapable of immediate global communication 
[23]. 

Table 1 shows the neighborhood of the cell which is 
taken to be the cell itself and some or all of the 
immediately adjacent cells. The state of each cell is 
updated simultaneously at discrete time steps, based on 
the states in its neighborhood at the preceding time step. 
The algorithm which is used to compute its successor 
state is referred as the CA local rule. Usually, the same 

local rule is applied to all cells of the CA. The state of a 
cell at time step (t+1) is affected by the states of all eight 
cells in its neighborhood at time step t and by its own 
state at time step t:

Tab.1: The neighborhood of the (i, j) cell is formed by the (i, j) cell 
itself and the eight marked cells. 
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jiS ,  are the states of the (i, j) cell at time
steps (t+1) and t, respectively. 

3. Simulation

Laplace's equation (2) is solved to calculate the potential 
distribution inside dielectric at every time step by Partial 
Differential Equation (PDE) Toolbox of Matlab:   

02 =∇ V (2) 

For the correct calculation of the potential distribution 
(see Fig. 2), the definition of the appropriate boundary 
conditions is crucial: 

• Dirichlet boundary conditions at the interface between
the needle electrode and XLPE, plane electrode and
XLPE are expressed as follow:

rVh =. (3)

where V is the electrostatic potential value, h is the 
weight factor equation (normally h=1) and r is the applied 
potential (at the needle r=80kV, at plane r=0).        

• Neumann boundary conditions between the dielectric

Fig. 1: The point/plane electrode arrangement, the white area
corresponds to the solid dielectric and black areas cor-
respond to the electrodes.

2. Cellular Automata

The behavior of a physical system is not determined
only by macroscopic parameters. The important as-
pects of the microscopic laws of physics are a great
challenge for anyone who tries to simulate physical sys-
tem. Cellular Automata (CA) are an idealization of
dynamic systems where space, time, and variables are
discrete and interactions are only local [23] and [24].
CA are first introduced by John von Neumann in the
late 1940s [25] and [26]. It has been used extensively
to model natural phenomena and complex systems [27].
Despite the simplicity of its structure, it is able to de-
scribe the behavior of the complex physical system.
Jon Conway in 1970, and Stephen Wolfram in the be-
ginning of the 80’s have developed architecture of CA,
the former proposed what is called "Game of Life" and
the latter studied in much detail a family of simple

one-dimensional CA rules, known as: Wolfram rules
[28].

More precisely, CA consists of a regular uniform n-
dimensional matrix. At each site of the matrix (cell),
a physical quantity takes values. This physical quan-
tity is the global state of the CA, and the value of
this quantity at each cell is the local state of this cell.
Each cell is restricted only to local neighborhood in-
teraction, and as a result, it is incapable of immediate
global communication [23]. Figure 2 shows the neigh-
borhood of the cell which is taken to be the cell itself
and some or all of the immediately adjacent cells. The
state of each cell is updated simultaneously at discrete
time steps, based on the states in its neighborhood at
the preceding time step. The algorithm which is used
to compute its successor state is referred as the CA lo-
cal rule. Usually, the same local rule is applied to all
cells of the CA. The state of a cell at time step (t + 1)
is affected by the states of all eight cells in its neigh-
borhood at time step t and by its own state at time
step t:

Fig. 2: The neighborhood of the (i, j) cell is formed by the (i, j)
cell itself and the eight marked cells.

The CA local rule is given by:
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where St+1
i,j and St

i,j are the states of the (i, j) cell at
time steps (t + 1) and t, respectively.
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3. Simulation

Laplace’s equation Eq. (2) is solved to calculate the
potential distribution inside dielectric at every time
step by Partial Differential Equation (PDE) Toolbox
of Matlab:

∇2V = 0. (2)

For the correct calculation of the potential distri-
bution (see Fig. 3), the definition of the appropriate
boundary conditions is crucial:

• Dirichlet boundary conditions at the interface be-
tween the needle electrode and XLPE, plane elec-
trode and XLPE are expressed as follow:

h · V = r, (3)

where V is the electrostatic potential value, h is
the weight factor equation (normally h = 1) and r
is the applied potential (at the needle r = 80 kV,
at plane r = 0).

• Neumann boundary conditions between the dielec-
tric sample and surrounding air are formulated as
follow:

−→n · ε ·
−→
∇V + q · V = g, (4)

where −→n is the outward unit normal, q is the
charge (q = 0), V is the electrostatic potential
value, g is the surface charge (g = 0) and ε is
the relative permittivity of the medium, for XLPE
ε = 2.3.
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sample and surrounding air are formulated as follow: 

gVqVn =+∇ ...ε (4)

where n is the outward unit normal, q is the charge (q=0),
V is the electrostatic potential value, g is the surface 
charge (g=0) andε is the relative permittivity of the 
medium, for XLPE ε=2.3. 
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Fig. 2: Potential distribution at the needle-plane geometry; the 
applied voltage is Vap =80 kV at time step t=0. 

The potential values obtained from PDE Toolbox of 
Matlab are classified with the aid of a Matlab algorithm 
in a matrix of (100×100) cells in every time step.

The physical system with needle-plane electrodes is 
divided into a matrix of identical square cells (100×100),
in which every cell has dimensions (0.1×0.1) mm. Thus, 
dimensions of XLPE sample are (10×10) mm (see Fig.
3). In this model, the internal state of each cell is defined
by two parameters: the potential value V and the value of 
dielectric inhomogeneity factor gdif which is generated
randomly between two values. 

Before simulation, the value of the electric stress Emax
at the end of the needle tip is assumed by the formula 
[29]: 
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where V is the applied voltage, s is the electrode gap 
distance, and r is the radius of the needle tip.
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Fig. 3: CA representation of an XLPE dielectric with a needle-plane 
electrode arrangement.

If the Emax attains a dielectric strength Ec=40kV/mm
[29], the electrical tree initiates from the end of the needle 
electrode because the value of the electric stress is 
transferred into this latter [30], [31], and consequently the
state of the cell at the end of the needle tip at time step
t+1 is 1.  

The common local rule (see Tab. 2) which is applied
at every time step to all cells to simulate electrical tree
evolution is:
Tab.2: Local rule applied to simulate electrical tree evolution. 

Time step Conditions 
t t+1 

State of 
the (i, j) 

cell 

1 1 / 
0 0 • None of its neighbor's state is 1.
0 1 • one or more of its neighbor's

state are 1 and E/Ec>1. 

The potential distribution gained from solving 
Laplace's equation with PDE of Matlab at every step is 
used to calculate electric field E between every cell of the 
electrical tree and the eight surrounding cells by the 
following equation [14], [32]: 

x
VgE dif ∆

∆
→ (4) 

where gdif is the dielectric inhomogeneity factor of a cell 
(it is generated randomly), V∆ is the potential difference 
between the two neighboring cells (horizontal, vertical or 
diagonal) and x∆ is the distance between centers of cells. 

The algorithm checks in every step cells that can 
belong to an electrical tree by applying cellular automata 
rule (see Tab. 1). If the tree progresses, then its structure
will change, which means new boundaries conditions are 
applied in the next step, and Laplace's equation is solved
again to gain the new potential distribution.

The tree stops growing if: 

Fig. 3: Potential distribution at the needle-plane geometry; the
applied voltage is Vap = 80 kV at time step t = 0.

The potential values obtained from PDE Toolbox of
Matlab are classified with the aid of a Matlab algorithm
in a matrix of (100× 100) cells in every time step.
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Fig. 4: CA representation of an XLPE dielectric with a needle-
plane electrode arrangement.

The physical system with needle-plane electrodes is
divided into a matrix of identical square cells (100 ×
100), in which every cell has dimensions (0.1×0.1) mm.
Thus, dimensions of XLPE sample are (10 × 10) mm
(see Fig. 4). In this model, the internal state of each
cell is defined by two parameters: the potential value
V and the value of dielectric inhomogeneity factor gdif
which is generated randomly between two values.

Before simulation, the value of the electric stress
Emax at the end of the needle tip is assumed by the
formula [29]:

Emax =
2V

r(ln(1 + 4s
r ))

, (5)

where V is the applied voltage, s is the electrode gap
distance, and r is the radius of the needle tip.

If the Emax attains a dielectric strength
Ec = 40 kV·mm−1 [29], the electrical tree initi-
ates from the end of the needle electrode because the
value of the electric stress is transferred into this latter
[30] and [31], and consequently the state of the cell at
the end of the needle tip at time step t + 1 is 1.

The common local rule (see Tab. 1) which is applied
at every time step to all cells to simulate electrical tree
evolution is:

Tab. 1: Local rule applied to simulate electrical tree evolution.

Time step Conditions
t t+ 1

State of
the (i, j)

cell

1 1 /

0 0 None of its
neighbor’s state is 1.

0 1
One or more of
its neighbor’s
state are 1 and E/Ec > 1.

The potential distribution gained from solving
Laplace’s equation with PDE of Matlab at every step
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Tab. 2: Parameters of three simulations for the electrical tree evolution.

Simulation 1. Simulation 2. Simulation 3.
Matrix dimensions 100× 100 100× 100 100× 100

Cell dimensions (mm) 0.1× 0.1 0.1× 0.1 0.1× 0.1
XLPE permittivity ε 2.3 2.3 2.3

Local dielectric strength (kV·mm−1) 40 40 40
Applied voltage (kV) 80 80 80

DIF’s range (gdif ) 0.95–1.04 0.95–1 0.97–1

is used to calculate electric field E between every cell
of the electrical tree and the eight surrounding cells by
the following equation [14] and [32]:

E → gdif
∆V

∆x
, (6)

where gdif is the dielectric inhomogeneity factor of a
cell (it is generated randomly), ∆V is the potential dif-
ference between the two neighboring cells (horizontal,
vertical or diagonal) and ∆x is the distance between
centers of cells.
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• The electric field is less than local dielectric
strength E/Ec<1.

• The dendrites reach the plane electrode.

In this paper, three simulations are presented to 
display the influence of the Dielectric Inhomogeneity 
Factor's range on the tree propagation. In each case, the 
range variation of the gdif is chosen.  

Details of three simulations are included in the Tab. 3: 
Tab.3: Parameters of three simulations for the electrical tree 
evolution. 

Simul. 1 Simul. 2 Simul. 3 
Matrix dimensions 100×100 100×100 100×100 

Cell dimensions (mm) 0.1×0.1 0.1×0.1 0.1×0.1 
XLPE permittivity ε 2.3 2.3 2.3 
Local dielectric strength 

(kV/mm) 
40 40 40 

Applied voltage (kV) 80 80 80 
DIF's range (gdif) 0.95-1.04 0.95-1 0.97-1 

All stages of each simulation are summarized in the 
following flow-chart (see Fig. 4):   

Fig. 4: Flow-chart of the dynamical simulation. 

4. Results and discussion

The effect of the DIF's range on the electrical tree 
evolution in XLPE is simulated in three different cases as 
shown in Fig. 5, Fig. 6 and Fig. 7. The applied voltage at 
the needle was taken to be equal to 80 kV and the 
distance between electrodes was chosen to be 6 mm. 

The electrical tree initiates from the needle tip and 
advances toward the plane electrode. In every time step, 
the Laplace's equation is solved to calculate a new 
distribution of the potential due to the propagation of 
branches which means a change in boundary conditions.  

All simulations are identical regarding the sample of 
dielectric XLPE, the geometry, and the same applied 
voltage. However, the difference is only in the DIF's 
range variation which is randomly generated. In the case 
of Fig. 5 the gdif is varied between 0.95-1.04, but in both 
cases Fig. 6 and Fig. 7; gdif is varied between 0.95-1 and 
0.97-1 respectively. 
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Fig. 5: Simulation results at t= 20 steps and the range of g varied 
between 0.95-1.04: (a) Electrical tree formation in XLPE with CA, (b) 
Electric field curves distribution. 

In these three cases, first, the tree emanates from the 
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Fig. 5: Flow-chart of the dynamical simulation.

The algorithm checks in every step cells that can
belong to an electrical tree by applying cellular au-
tomata rule (see Fig. 2). If the tree progresses, then
its structure will change, which means new boundaries
conditions are applied in the next step, and Laplace’s
equation is solved again to gain the new potential dis-
tribution.

The tree stops growing if:

• The electric field is less than local dielectric
strength E/Ec < 1.

• The dendrites reach the plane electrode.

In this paper, three simulations are presented to dis-
play the influence of the Dielectric Inhomogeneity Fac-
tor’s range on the tree propagation. In each case, the
range variation of the gdif is chosen.

Details of three simulations are included in the
Tab. 2.

All stages of each simulation are summarized in the
following flow-chart (see Fig. 5).

4. Results and Discussion

The effect of the DIF’s range on the electrical tree evo-
lution in XLPE is simulated in three different cases as
shown in Fig. 6, Fig. 7 and Fig. 8. The applied voltage
at the needle was taken to be equal to 80 kV and the
distance between electrodes was chosen to be 6 mm.

The electrical tree initiates from the needle tip and
advances toward the plane electrode. In every time
step, the Laplace’s equation is solved to calculate a
new distribution of the potential due to the propaga-
tion of branches which means a change in boundary
conditions.

All simulations are identical regarding the sample of
dielectric XLPE, the geometry, and the same applied
voltage. However, the difference is only in the DIF’s
range variation which is randomly generated. In the
case of Fig. 6 the gdif is varied between 0.95–1.04, but
in both cases Fig. 7 and Fig. 8; gdif is varied between
0.95–1 and 0.97–1 respectively.

In these three cases, first, the tree emanates from
the point electrode where the electric stress is higher
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(a) Electrical tree formation in XLPE with CA.
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(b) Electric field curves distribution.

Fig. 6: Simulation results at t = 20 steps and the range of g varied between 0.95–1.04.
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(a) Electrical tree formation in XLPE with CA.

0

5

10

0

5

10
0

2

4

6

8

x 10
4

 

 
E

(k
V

/m
m

)

x(mm)y(mm)
0

1

2

3

4

5

6

7

x 10
4

(b) Electric field curves distribution.

Fig. 7: Simulation results at t = 20 steps and the range of g varied between 0.95–1.
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(b) Electric field curves distribution.

Fig. 8: Simulation results at t = 20 steps and the range of g vary between 0.97–1.
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than the dielectric strength of the XLPE (Emax > Ec).
Then, dendrites start advancing toward the plane elec-
trode by activities of discharges within the gas-filled
channels following the paths where the homogeneity
of XLPE is the weakest. The tree channels consist as
conducting material, (i.e. they played the same role
of the point electrode), so the potential value at every
tree cell is considered to be equal to the value of the
potential applied at the end of the needle tip.

In the first case (see Fig. 6), the electrical tree is
more extensive. Also, it contains a significant number
of branches, due to weak chemical bonds i.e. electric
field is strong in numerous cells which means that the
dielectric is less crosslinking since its smaller degree of
homogeneity.

In contrast, the tree in the case of (Fig. 8) is narrow
due to the strong chemical bonds since the range of the
variation of the dielectric inhomogeneity factor is too
small. Therefore, many structures of tree are formed,
Cascade-tree is formed in both cases of (see Fig. 6)
and (see Fig. 7) [8], but the tree’s shape (see Fig. 8) is
branch-tree [3].

Finally, it is clear that the range of the DIF, i.e.
the homogeneity of the dielectric material is crucial
factor for electrical tree behavior. The results of this
simulation are similar to results published in literature
[33].

5. Conclusion

The presented contribution consists of a confirmation
that the range variation of the Dielectric Inhomogene-
ity Factor has a pronounced effect on the process of
the electrical tree growth in XLPE dielectric. Further-
more, the current study demonstrated that:

• When the range variation of the DIF is very tight,
the electrical tree becomes narrow and consists of
a minimum number dendrites and vice-versa.

• For the reliable solid dielectric, a tree is produced
with only one dendrite that advances perpendicu-
larly toward the plane electrode.

• The range variation of DIF is almost constant for
ideal solid dielectric.
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