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Abstract. In this paper, we present a modified inter-
view prediction Multiview Video Coding (MVC) scheme
from the perspective of viewer’s interactivity. When
a viewer requests some view(s), our scheme leads to
lower transmission bit-rate. We develop an interactive
multiview video streaming system exploiting that modi-
fied MVC scheme. Conventional interactive multiview
video systems require high bandwidth due to redundant
data being transferred. With real data test sequences,
clear improvements are shown using the proposed in-
teractive multiview video system compared to compet-
ing ones in terms of the average transmission bit-rate
and storage size of the decoded (i.e., transferred) data
with comparable rate-distortion.
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1. Introduction

Multiview video consists of video sequences of the
same scene captured time-synchronously by multiple
closely spaced cameras from different observation view-
points [1]. Multiview Video Coding (MVC) [2] has
been used to encode the multiview video signals us-
ing various proposed schemes including both tempo-
ral and inter-view predicted frames (i.e., frames are
predicted not only from the temporally neighboring
frames, but also from the corresponding frames in ad-
jacent views). MVC typically focuses on increasing the
Rate-Distortion (RD) performance for the compressed
frames of all views as shown in [3], [4]. Since users do
not need all of the views at the same instance, trans-
mitting the whole set of frames leads to consuming

bandwidth resources. Nevertheless, decoding the com-
pressed multiview video at the user side requires high
computational cost and storage space.

An Interactive Multiview Video Streaming (IMVS)
system [5] provides the aforementioned multiview video
service efficiently and flexibly, to enable a viewer to
freely interact with the multiview video data. The
IMVS system has the advantage of reducing the band-
width usage, since only the requested subset of the
multiview video data is transmitted. However, the
primary challenge in an IMVS system is to design a
structure to encode the multiview video data with a
reasonable compression efficiency [6] (i.e., having the
transmission bit-rate reduced), having the RD perfor-
mance increased, and having the storage size of the
encoded multiview video data reduced.

Readers are referred to [7], [8], [9], [10], [11] for more
details on IMVS systems. In [7], the IMVS system en-
codes the multiview video data with a simulcast mode.
In such a mode, each view is encoded and transmit-
ted independently, and each client receives as many
needed views according to the channel bandwidth. Al-
though such an IMVS system increases the interac-
tivity between the user and the underlying requested
view(s), redundant data is transferred at the expense of
the quality of the transferred video for limited channel
bandwidth.

In [8], a client-driven multiview video streaming sys-
tem is presented to allow a user to watch 3D video
interactively with significantly reduced bandwidth re-
quirements by transmitting a small number of views
selected according to the viewer’s head position. That
system makes use of MVC and scalable video coding
concepts together to obtain improved compression effi-
ciency. However, a base layer and enhancement layers
of two selected views are additionally transmitted.

In [9], a similar IMVS system to that in [7] is de-
signed to encode the multiview video data with a simul-
cast coding method, where the multiview video data is
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sent as two separate streams transported at separate
Internet Protocol (IP) channels. However, simulcast
encoded video still contains a large amount of inter-
view redundant data and needs to by synchronized with
inter-view switching. If two views need to be retrieved
from the currently received view to another, those two
views may have different end-to-end delays. Such dis-
continuity would negatively impact the viewing expe-
rience of end users.

In [10], an IMVS system uses successive view mo-
tion model that discriminates all frames into potential
and redundant ones to be encoded and transmitted to
the client. However, the performance of this system de-
pends on Kalman filter-based predictor. If there are no
prediction errors, high-quality streams are displayed.
However, the predictor is not fully perfect. So, if the
prediction is not fully correct, only the base layer (low-
quality) is displayed and it brings poor user experience.

In [11], an encoding structure is presented to enable
each view to be transmitted over a multicast group
formed by clients requesting the same view. An op-
timal rate allocation algorithm is proposed to deliver
the views selected by a client according to the network
conditions. However, the decoding complexity should
be maintained at a low level for a IMVS decoder due to
various processing capability of terminal devices used
by different interactive clients.

The IMVS system has the advantage of using a re-
duced bandwidth since only the requested data sub-
set is transmitted. The primary challenge in an IMVS
system is to design a structure to encode the multi-
view video data with a good compression efficiency, so
that the transmission bit-rate is appropriately traded
off with the storage size.

In [12], an MVC scheme that encodes the requested
multiview video subset data, is presented. In that
scheme, the inter-view prediction is performed only for
the key frames to provide P -frames for both even and
odd camera views. Whereas, the non-key frames of
each Group of Pictures (GoP) are predicted with hi-
erarchical B-frames in the temporal direction. In this
paper, we extend the work to embed it as a first step of
a proposed interactive multiview video streaming sys-
tem, with a 3-tier architecture inspired from [13] (i.e.,
client, application server, and database server). The
proposed IMVS system is compared to the state-of-the-
art IMVS systems in terms of transmission bit-rate (in
kb·s−1) and pre-encoded data storage size (in kByte).

The rest of the paper is organized as follows. The
proposed IMVS system including the MVC scheme
used is described in Section 2. Implementation setup,
data set sequences used and experimental results are
shown in Section 3. Finally, conclusions are given in
Section 4.

2. The Proposed IMVS
System

A typical IMVS system consists of 5 successive steps:
capture, encode, store, transmit and decode. First,
the multiview video data is encoded using an encoding
scheme. Then, the encoded multiview video data is
submitted to a central server, called application server,
in order to be stored in a video database that is avail-
able at the MVC database server.

The application server only needs to prepare and
transmit video stream to each client once its request
has been received. The video stream is then pre-
pared by splitting the requested multiview video sub-
set data from the whole multiview video set. The
database management system at the MVC database
server fetches the prepared video stream to be submit-
ted to the application server that returns it back to the
client(s). The application server can also reduce the
resolution of the video stream to adapt to the available
transmission bandwidth. The resolution reduction can
be obtained by decreasing the number of video frames
at the time domain. Finally, at the client side, there
is a standard video decoder that decodes the retrieved
multiview video subset data.

The proposed IMVS system is based on 3-tier ar-
chitecture: MVC encoding scheme, application server
and MVC database server that are shown in Section
2.1. , Section 2.2. and Section 2.3. , respectively.
The cost of splitting views and that of random access
are presented in Section 2.4. and Section 2.5.
respectively.

2.1. The MVC Scheme Used

This subsection shows the MVC scheme used in the
proposed IMVS system that encodes the retrieved mul-
tiview video subset data.

The captured sequence is encoded by an MVC en-
coder that generates one merged stream. The gener-
ated bit-stream is submitted to the application server
to be stored at the MVC database server. Figure 1(a)
shows an example of the prediction structure of the
proposed MVC scheme [12], with number of views, N ,
set to 8 and GoP length, M , set to 8. Setting the base
view to S4, the inter-view prediction is performed only
for the key frames at T0 and T8 to provide P -frames
for even camera views (S2, S0 and S6) as well as odd
camera views (S3, S1, S5 and S7). Whereas, the non-
key frames of each GoP are predicted with hierarchical
B-frames in the temporal direction as shown in [14].
Temporal scaling is shown in Fig. 1(b) can be applied
to any multiview with more than two views.
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Fig. 1: (a) The prediction structure of the proposed multiview
video coding scheme, (b) The proposed temporal scal-
ing.

2.2. The Application Server

In this subsection, the application server role is pre-
sented. The 3-tier architecture of the proposed IMVS
system is shown in Fig. 2. The client selects a multi-
view video subset data stored in the MVC database to
be decoded and displayed. The selection process acts
as a request from the client to the application server.
The control module at the application server, receives
and schedules the clients’ requests, then asks the MVC
database server to retrieve the requested view(s) from
the MVC database to be transferred to the client. The
scheduling process is performed according to the re-
quested view(s), client’s code, and available transmis-
sion bandwidth. If there are more than one request for
the same view, the control module transmits that view
over a multicast group formed by the clients request-
ing that view. The client can randomly switch between
frames in both temporal and view-wise directions.
The cost of such a random access will be shown in
Section. 2.5.

Fig. 2: The 3-tier architecture of the proposed IMVS system.

The control module checks for the available trans-
mission bandwidth. In case of insufficient bandwidth,
the requested view(s) will be accumulated at the appli-
cation server. Thus, a stream delay will occur yielding
buffer overflow. In such a delay case, the control mod-
ule passes the video stream through the stream adap-
tation module. This module reduces the video stream
resolution using temporal scaling in the time domain
by decreasing the number of video frames within each
GoP. Figure 1(b) shows the proposed temporal scal-
ing at the hierarchical B-frames. It can be shown that
the B-frames with symbol "B3" are not used as refer-
ence frames to encode others. Thus, those frames can
be discarded to reduce the number of frames within
one GoP before transmission, in order to adapt to the
available transmission bandwidth.

2.3. The MVC Database Server

This subsection shows the role of the MVC database
server in splitting the multiview video subset data in
response to the client’s requests.

The video database typically provides video pre-
processing for content representation and indexing,
storage management for video, and continuous video
streaming [15], [16]. The MVC database has the abil-
ity to split a requested view from the whole set of
views to be transmitted to the client. The MVC ex-
traction engine retrieves the requested view from the
MVC database server by splitting that view to its ref-
erences from the whole set of views. The output of the
MVC extraction engine forms a MVC sub-stream to be
submitted to the application server, before it is trans-
mitted to the client. The cost of the view splitting step
is discussed in the following subsection.

2.4. Cost of Splitting Views

As shown in Section 2.1. , the MVC prediction struc-
ture consists of one base view, Sb, and multiple en-
hanced views, Se. The Sb is normally coded by single-
view coding, and acts as a reference frame to encode
other Se frames. For some view, Sn, The splitting pro-
cess is obtained by extracting its GoP series from each
group of GoP stream. The number of extracted frames
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for one GoP can be generally formulated as:

E(b, n, l, α, β) = I +R(b, n, α)× P +G(l, β)×B, (1)

where E(·) denotes the cost function for extracting
frames, b denotes the base view number, n denotes
the view number to be encoded, α denotes the style
of inter-view prediction at key frames; α ∈ {1, 2: 1
for standard style (i.e., is referred to as HBP), and 2
for sequential style}, β denotes the number of reference
views for non-key frames; β ∈ {0, 1, 2}, R(·) denotes
a function to determine the number of key frames in an
inter-view prediction as of Sb through Sn, G(·) denotes
a function to determine the number of non-key frames
in scheme related with Sn and l denotes the number of
non-key frames in that GoP. The function R(b, n, α) in
Eq. (2) can be cast as:

R(b, n, α) =

{
d|(b− n)|/2e, α = 1,

|(b− n)|, α = 2,
(2)

where b, n ∈ {0, 1, 2, . . . , N − 1} and N denotes the
total number of the views. As well, the function G(l, β)
in Eq. (1) can be written as:

G(l, β) =


l, β = 0,

2× l, β = 1,

2 + 3× l, β = 2.

(3)

Generally, the cost, CostE , of the extracted frames
for splitting all GoPs can be cast as:

CostE =

N−1∑
i=0

E(b, i, α, β). (4)

To improve the view extraction performance, the
CostE , in Eq. (4), of each GoP has to be minimized.
Therefore, the CostE in Eq. (7) can be reformulated
for a given encoding scheme, τ .

CostE(τ) = arg min
Sb,α,β∈ {τ}

N−1∑
i=0

E(b, i, l, α, β), (5)

where each τ has its own parameters Sb, α and β.

To solve the minimization problem in Eq. (5), we
should better choose an encoding scheme to use in
the proposed IMVS system. This choice step can be
obtained by determining the CostE for all candidate
encoding schemes, considering that the best scheme
yields the lowest CostE value.

2.5. Cost of Random Access

It is worth noting that the random accessibility is the
first step in interactivity. The user can access any sin-
gle frame in either temporal or view-wise directions

when watching a multiview video program [17]. Ran-
dom Access (RA) can be defined as the cost of accessing
any frame in one video sequence. Therefor, RA can be
considered as an evaluation performance metric for a
candidate prediction structure of an encoding scheme.
The RA performance is measured by the number of
frames that are needed to decode a specific frame in
one GoP. In turn, the best encoding scheme should
yield a minimum Accumulative Sum of the Reference
Frames (ASRF) that can be formulated as in Eq. (6).

Where A(·) denotes the ASRF, b denotes the base
view number; b ∈ {0, 1, 2, . . . , N − 1}, n is the ran-
domly selected view number; n ∈ {0, 1, 2, . . . , N − 1},
Fn,t denotes the frame at view Sn and time t, l denotes
the number of non-key frames in GoP, and α and β are
as defined in Eq. (1). The function P (Fn,t, β) deter-
mines the number of reference frames for the frame Fn,t
and can be formulated as in Eq. (7).

Where Λ ≡ {1, 2, . . . , l} and ϑ denotes the level of
non-key frame Fn,t in an encoding scheme. The func-
tion H(b, n, α) determines the number of frames in the
inter-view prediction and defined as in Eq. (8).

As well, the function D(Fn,l) determines a constant
value according to the location of the frame in an en-
coding scheme and can be written as:

D(Fn,t) =


0, n = b, t ∈ {1, 2, . . . , l},
1, n 6= b, t ∈ {1, 2, . . . , l},
1
2 , t ∈ {0, l + 1}.

(9)

For instance, in the proposed encoding scheme,
shown in Fig. 1(a), the postscript of I-, P -, and B-
frames denotes the level ϑ. For certain Sb, the cost of
random access, CostR (in frames), can be determined
as:

CostR =

N−1∑
j=0

A(b, j, α, β). (10)

To improve the random accessibility performance, the
CostR, in Eq. (10), of each GoP has to be minimized.
Therefore, the CostR in Eq. (10) can be reformulated
for a given encoding scheme, τ , as:

CostR(τ) = arg min
Sb,α∈ {τ}

N−1∑
j=0

A(b, j, α, β), (11)

where each τ has its own parameters Sb, α, and β.

To solve the minimization problem in Eq. (11), we
should better choose an encoding scheme to use in
the proposed IMVS system. This choice step can be
obtained by determining the CostR for all candidate
encoding schemes, considering that the best scheme
yields the lowest CostR value.
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A(b, n, α, β) =

l+1∑
t=0

P (Fn,t, β) + 2
∑

k∈ {H(b,n,α)}

D(Fn,t)

 , (6)

P (Fn,t, β) =


ϑ + 1, β = 0, t ∈ Λ,

2(ϑ + 2) − 1, β = 1, t ∈ Λ,

(ϑ × 2) − (ϑ − 2), β = 2, t ∈ Λ,

0, t ∈ {0, l + 1},

(7)

H(b, n, α) =



{b, b+ 2, b+ 4, . . . , n}, n > b, α = 1,

{b, b− 2, b− 4, . . . , n}, n < b, α = 1,

{b, b+ 1, b+ 2, . . . , n}, n > b, α = 2,

{b, b− 1, b− 2, . . . , n}, n < b, α = 2,

{b}, n = b.

(8)

3. Experiments & Results

In this section, the data sequences used are described
in Section 3.1. The implementation setup of all ex-
periments is given in Section 3.2. Finally, the results
are shown and discussed in Section 3.3.

3.1. Data Sets Description

The data set used in the experiments includes four
standard video sequences [18], [19]. Their character-
istics are provided in Tab. 1. The first sequence, Ball-
room [18], shows a dynamic scene containing fast mo-
tion of the dancers and many overlapping objects. The
second sequence, Exit [18], represents a static scene
with few persons slowly moving from right to the mid-
dle of the scene. The third sequence, Vassar [18], has
been captured in an ambient day light and contains
no discernable motion blur on the boundaries of the
moving objects. The fourth video sequence, Break-
dancers [19], represents a scene captured by cameras
placed on an arc-shaped alignment around the static
scene, with few breakdancers.

3.2. Implementation Setup

Our implementation runs on a personal computer with
2.4GHz Core i3 and 2GB of RAM. For the applica-
tion server, we installed Live555 media server for video
transmission software [20].

In this paper, we use the joint multiview video cod-
ing software (v.8.5) [21] for encoding the data sets to
extract the MVC sub-stream at the MVC extraction
engine. The quantization parameter is set to 24, 28,
32, and 36. The search mode is set to fast search with
search window set to 96 × 96 pixels. The length of a

GoP:M is set to 12 for the Ballroom, Exit, and Vas-
sar video sequences. Whereas, the length of a GoP:M
is set to 15 for the Breakdancers video sequence .

3.3. Results of the MVC Scheme
Used

The MVC scheme used [12], shown in 2.1. , is com-
pared to:

• the simulcast scheme [4] (i.e., referred to as Simul-
cast),

• the encoding multiview video structure [4]
(i.e., referred to as KS-IPP),

• the MVC standard scheme [22] (i.e., referred to as
MVC-HBP),

• the MVC encoding scheme of [23] (i.e., referred to
as YANG).

The performance of competing schemes is evaluated
by three metrics:

• the RD performance (in dB·(kb−1·s−1) at the basis
of the higher the better,

• the cost of splitting views (in frames) at the basis
of the lower the better,

• the cost of random access (in frames) at the basis
of the lower the better.

The RD performance, measured in dB·kb−1·s−1, de-
scribes the trade-off between the video quality and the
bit-rate of the video stream. The RD performance is
at the basis of the higher the RD value, the better
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Tab. 1: Description of the test video sequences [18], [19]

Sequences Object
Motion Resolution Format Camera

Arrangement
File size

in 8 views
Bit-rate
(kb·s−1)

Ballroom
Vassar
Exit

Medium
Low
High

640×480
rectified,
25 fps

4:2:0

8 cameras
1D/parallel

20 cm
inter-spacing

878 MB
10 s

719
257.6

Breakdancers High 1024×768
15 fps 4:2:0

8 cameras
1D/arc
20 cm

inter-spacing

900 MB
6.7 s

1
100
417.9
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Fig. 3: Rate-distortion performance of competing encoding schemes: MVC-HBP [22], YANG [23], KS-IPP [4], Simulcast [4], and
Proposed [12], for different sequences with different quantization parameters (QP) using standard video sequences.

the MVC encoding scheme. Figure 3 shows the RD
performance using competing MVC schemes applied
to the data sequences shown in Section 3.1. at dif-
ferent quantization parameters. It can be shown that
the MVC scheme used provides comparable RD per-
formance compared to the KS-IPP [4], MVC-HBP [22]
and YANG [23] schemes. Whereas, the MVC scheme
used surpasses the Simulcast scheme [4] by an average
improvement of 19 % in terms of RD performance.

Table 2 shows the cost of splitting views, CostE , for
competing MVC schemes. The MVC scheme used out-
performs the MVC-HBP [22], KS-IPP [4], and YANG
[23] schemes by an average reduction of 44.6 %, 14.2 %
and 3 %, respectively, in terms of the cost of splitting
views.

Tab. 2: Cost of splitting views, CostE , using competing MVC
schemes with different groups of GoP. The lower, the
better.

Group of
GoP size

CostE (in frames)
MVC-HBP

[22]
KS-IPP

[4]
YANG

[23] Prop.

8×8 132 92 77 74
8×12 192 124 109 106
8×15 237 142 133 130

Table 3 shows the cost of random access, CostR,
that can be determined by Eq. (11) using all compet-
ing MVC schemes. It can be shown that the MVC
scheme used outperforms the MVC-HBP [22], KS-IPP
[4], and the YANG [23] schemes by an average reduc-
tion of 42.9 %, 43.2 % and 1.1 % respectively, in terms
of the cost of random access.
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Tab. 3: Cost of random access, CostR, using competing MVC
schemes with different groups of GoP. The lower, the
better.

Group of
GoP size

CostR (in frames)
MVC-HBP

[22]
KS-IPP

[4]
YANG

[23] Prop.

8×8 615 640 358 352
8×12 979 992 566 560
8×15 1357 1312 778 772

3.4. Results of the Proposed IMVS
System

The proposed IMVS system, referred to as Proposed
IMVS, is compared to:

• the multiview video coding system [4] (i.e., re-
ferred to as MVC system),

• the real-time transmission system of high-
resolution multiview stereo video over IP networks
[9] (i.e., referred to as Multiview over IP system),

• the client-driven selective streaming system for
multiview video transmission [11] (i.e., referred to
as Client-driven system).

The performance of competing systems is evaluated
by three metrics:

• the transmission bit-rate (in kb·s−1),

• the pre-encoded data storage size (in kByte),

• the ratio between transmission bit-rate and stor-
age size (in (kb·s−1)·kByte−1).

The transmission bit-rate metric is measured in Kbps
and comes at the basis of the lower the better. Ta-
ble 4 shows that the proposed IMVS system outper-
forms the MVC [4], the Multiview over IP [9], and
the Client-driven [11] systems by an average improve-
ment of 81.8 %, 63.5 % and 42.4 %, respectively, in
terms of transmission bit-rate (in kb·s−1). This im-
provement can be analyzed as follows. The proposed
IMVS system as well as the Client-driven system trans-
mit only the requested view(s) to the client. Whereas,
the MVC system transmits the whole set of views to
the client. While, the Multiview over IP system [9]
transmits the whole set of views into two separate
streams to the client. The storage size, in KBytes,
of the pre-encoded multiview video subset data is an
important factor that impacts the IMVS system per-
formance. Therefore, that factor comes at the basis
of the lower the better. Table 4 shows that the pro-
posed IMVS system outperforms the Multiview over
IP system [9] by an average reduction of 18 %, and
provides a negligible increase in the storage size com-
pared to the MVC [4] and Client-driven [11] systems.

In terms of the ratio between transmission bit-rate and
storage size (in (kb·s−1)·kByte−1), Tab. 4 shows that
the proposed IMVS system outperforms the MVC [4],
the Multiview over IP [9] and the Client-driven [11]
systems by an average improvement of 79 %, 68 % and
39 %, respectively.

Tab. 4: Results of competing IMVS systems to encode stan-
dard video sequences at different quantization parame-
ters (24, 28, 32, and 36) using i) transmission bit-rate
(kb·s−1), ii) storage size (kByte), and iii) transmission
bit-rate/storage size ((kb·s−1)·kByte−1).

Approach Metric Video sequences
Ballroom Vassar Exit break

MVC [4]
(i) 4360 2431.6 2253 2865.7
(ii) 5322.2 2968.3 2750.3 2332.1
(iii) 0.8192 0.8192 0.8192 1.2288

Multiview (i) 3029 1688.1 1370 1791.1
over IP [9] (ii) 7395 4121.2 3344.6 2915.2

(iii) 0.4096 0.4096 0.4096 0.6144
Client (i) 1512.9 1118.6 775 682

-driven [11] (ii) 5909.5 3087.2 2877.3 2544.2
(iii) 0.2560 0.3623 0.2694 0.2681

Proposed (i) 702 612.8 504.7 533
IMVS (ii) 5909.2 3087.5 2877.1 2544
system (iii) 0.1188 0.1985 0.1754 0.2095

4. Conclusions

In this paper, we first presented an inter-view predic-
tion structure of the MVC scheme. The MVC scheme
surpasses the KS-IPP, MVC-HBP and YANG MVC
schemes by an average reduction of 44.6 %, 14.2 %
and 3 %, respectively, in terms of splitting views cost
and by an average reduction of 42.9 %, 43.2 % and
1.1 % respectively, in terms of the random access
cost. The presented MVC scheme provides compara-
ble rate-distortion performance compared to the afore-
mentioned MVC schemes and surpasses the Simulcast
scheme by an average increase of 19 %.

The proposed IMVS system exploits the MVC
scheme used in [12] to ultimately improve the viewer
interactivity. The proposed IMVS system outperforms
the MVC, Multiview over IP and Client-driven sys-
tem by an average improvement of 81.8 %, 63.5 % and
42.4 %, respectively, in terms of transmission bit-rate
and by an average improvement of 79 %, 68 % and
39 %, respectively in terms of the ratio between trans-
mission bit-rate and storage size. However, the pro-
posed IMVS system has subtle increase in the storage
size compared to the MVC and Client-driven systems,
though the former outperforms the Multiview over IP
system by an average reduction of 18 % in the storage
size.
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