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Abstract. Conventional techniques for sensorless con-
trol of permanent magnet synchronous motor drive
(PMSM), which requires information on rotor position,
are reviewed, and recent developments in this area are
introduced in this paper along with their inherent ad-
vantages and drawbacks. The paper presents an im-
proved method for sensorless speed control of PMSM
drive with emphasis placed on signal injection method.
This signal injection method examines the control per-
formance of sensorless PMSM drive by injecting sig-
nal externally and thereby sensing the rotor position.
The main objective of this drive system is to have
speed control at standstill and low speed regions. Sev-
eral tests are carried out to demonstrate the ability of
proposed models at different operating conditions with
the help of simulation results in Matlab/Simulink envi-
ronment. Simulation results confirm that the proposed
sensorless control approach of PMSM can achieve high
performance at standstill and low speeds but not at
very high speeds. An experimental setup is imple-
mented using a 1HP surface mounted (SM) PMSM and
dsPICDEMT™™ MCHV-2 development board, to check
the validity of simulation results.
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1. Introduction

Permanent Magnet Synchronous Motor (PMSM)
drives have been used widely due to its numerous ad-
vantages such as higher efficiency, higher power factor,
rugged construction, reliable operation, high degree of
control flexibility, high torque to inertia ratio, high
torque to current ratio, etc. These advantages have
attracted the interest of researchers and industry for
industrial drive applications [I], [2], [3]. For the imple-
mentation of any control strategy two current sensors
and knowledge of rotor position is required. In most
variable speed drives an electro-magnetic resolver or
optical encoder is fitted to the rotor shaft for this pur-
pose. Though this method is precise, the presence of
this shaft sensor introduces extra cost, decreases relia-
bility and higher number of connections, thus making
the total system cost very non-competitive compared
to other types of motor drives. Hence, all of the above
limitations make elimination of these devices very de-
sirable [I]. From literature, it is apparent that there ex-
ist different techniques related to the sensorless control
of PMSM [2]. An overview of the conventional sensor-
less control techniques for PMSM is presented in Fig.
Sensorless techniques are classified into three classes
as those using the fundamental excitation models or
model of the machine, those using saliency and signal
injection methods and artificial intelligence methods
[I]. This paper presents a performance of rotor po-
sition sensorless control of PMSM drive in which the
rotor position is sensed by injecting external high fre-
quency (HF) voltage signal in rotating g-and d-axes
[4], [5]. With this scheme the difficulties in sensing
the rotor position at standstill are eased. This paper
tests the proposed method by various simulations and
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finally some useful conclusions are drawn. The desired
performance is achieved by implementing vector con-
trol technique in Matlab/Simulink and tested under
different operating conditions [6]. The main aim of this
drive system is to have a closed loop speed control at
low speed range without using a speed transducer and
the simulation results demonstrate that the proposed
strategy is effective.

This paper is organized into seven sections:

e Section provides a general introduction and
literature review of the PMSM and a study of var-
ious existing sensorless control strategies with fo-
cus on the HF signal injection for the extraction
of rotor position.

e In Section the simplified dynamic model of
the PMSM is developed and is shortly examined.

e In Section the signal injection technique used
for extraction of rotor position is presented.

e Section presents a newly developed position
sensorless speed controlled PMSM drive.

e In Section [4.8.] detailed simulation results under
various operating conditions are presented empha-
sizing the merits and demerits of the method.

e Experimental setup and results are presented in
Section The paper is concluded in Section |
0. |

2. PMSM Model

| Sensorless Control of PMSM |

! ,

Fundamental Artificial
excitation models Inteligence methods

Saliency and Signal
injection methods

|

1. HF Signal injection methods
2. LF Signal injection methods

y
| NonAdaptive methods |

1. Estimators using monitored stator voltages/currents
2. Flux based position estimation
3. Back e.m.f. based position estimators

Adaptive Methods

'

v Observedbased Estimators
Estimation based on Model 1. Luenberger Observer
Reference Adaptive 2. Reduced Order Observer
System (MARS) 3. Sliding mode observer (SMO)
4. Extended Kalman filter

Fig. 1: Common sensorless control techniques for PMSM.

The detailed modeling of three-phase PMSM drive
system is required for proper simulation and analysis of

the system. With some assumptions, the d- and g-axes
stator voltages in rotor reference frame are [6]:

—wyL, i n 0
Rs + Lgp| |igs WrAar|

From Eq. (1)), it is observed that the voltage equa-
tions are equal to the product of the impedance ma-
trix and the current vector, with an additional compo-
nent due to the motionalelectro-motive force (emf) of
the rotor flux linkages. The electromechanical dynamic
equation is given by Eq. (2)),

V(;s _ R5+Ldp
Vis - wyLyg

dw,,
—— + T + Bw,,. 2
I + 11 + bw ( )

T.=J
The dgo currents are obtained from abc currents us-
ing Park transformation as Eq. :

In a balanced three-phase system, the sum of three
phase currents is zero. This is given by:

lgs T lps +ics = 0. (4)

From Eq. (4), it is seen that if two currents are mea-
sured, the third-phase current can be reconstructed
from the other two phase currents [7]. This eliminates
the need for additional current sensors.In order to have
a meaningful interpretation in the modeling, analysis
and simulations, the power input to three phase ma-
chine has to be equal to the power input to two phase
machine. From Eq. and Eq. , dynamic model
of PMSM in rotor reference frame is derived and is

expressed by Eq. .

3. Implementation of Sensing

Rotor Position by External
HF Rotating Voltage Signal
Injection

The basic scheme in signal injection is to generate

a revolving voltage phasor by applying three-phase
voltages at a signal frequency that is different and
mostly higher than fundamental frequency [8]. This
method has been used for extracting rotor position us-
ing an observer. In stationary reference frame, injected
voltages at frequency w; are given as:

Vasi sin 6;
Vpsi | = V; [sin (6; — 2?”) ) (6)
Vesi sin (Gi + 2?“)

where:
91' = wit.
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Transforming the voltages into ¢- and d-axes in the
same reference frame as:

Vysi sin 6;
|: qsz:| B ‘/Z |: os 7’:| .
Vdsi cos0;
The injected flux linkage vector in estimated rotor
reference frame can be given by:

|:>\qs7,':| = V;z sin 91 |:

(®)

)\dsi (9)

—sinb,.

c0s 0, }

The injected frequency component of the stator cur-
rents can be obtained as:

S

lgsi| _ . 0, I cos Oy — Iy cos{2 (0, — 0,c)}
i =sin6; —Iysinb,c + Irsin {2 (0, — 0,c)}|’

- (10)
| L = 4 ( 2q+Ld) 2 (11)
w; (L +Ld) (L Ld)
v (45)
IL,=—" (12)

Wy Lq—‘rLd _ Lq_Ld 2
2 2
Transforming the d-axis current to the estimated ro-
tor position reference frames yields [9].

159i = Ugsi SN (Ore) + Gqsi COS (Ore) - (13)
Equation [13| can be rewritten as:
1595 = Iosin6; [sin {2 (0, — 0,¢)}] . (14)

From Eq. [14]it can be seen that it contains the in-
formation related to rotor position error. This useful
signal can be extracted using a bandpass filter (BPF)
which separates the fundamental component from the
HF component followed by an observer. This posi-
tion error can be demodulated by any demodulation
schemebut in this model heterodyning process is used-
for the estimation of position and speed [5].

—) cos (GT + %’T) Tas
) sin (6, + 2F) ibs (3)
% iCS
- 1
of =] [ 0 07
ol I ) R A )
0 Wy O 0 —1 Tl
ol Lo 0 0 0

4. Implementation of
Speed-Controlled Sensorless
PMSM Drive by Estimating
Rotor Position Using Signal
Injection

The proposed model developed for sensorless vector
control of PMSM drive using signal injection, as pre-
sented in Fig. is implemented using the software
Matlab/Simulink. It consists of a speed loop, current
and torque angle calculator, stator current synthesizer,
inverter with SPWM current control, PMSM model,
HF signal injection, demodulation process, controller
and observer for rotor position and speed estimation.
Each functional block is elaborated in detail in the fol-
lowing sections. The principle for this speed control
strategy is based on comparing the reference speed and
the estimated speed [I0]. The speed error thus ob-
tained is then processed through the speed controller
and the output of this block represents the reference
torque (7)) for the current and torque angle calcula-
tor. The stator current synthesizer generates the phase
reference current commands. The three phase reference
currents are compared with their respective actual cur-
rents resulting in the current errors in a PWM current
controller which is then used to generate the switching
signals for the inverter. In the proposed scheme the
feedback signal i.e. rotor position (6,.) is estimated
using external signal injection scheme. Once the rotor
position is estimated, the rotor speed (w,.) can be es-
timated by using Eq. @ [I1]. The inability with most
of the methods to provide accurate rotor position esti-
mation at low speeds, which directly affects the control
performance, would not be a problem with this tech-
nique [12].

4.1. Speed Controller

The speed error between command and estimated val-
ues of speed is processed in the proportional and inte-
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Fig. 2: Overall schematic of the sensorless vector control for a speed controlled PMSM drive by using external high frequency

signal injection scheme.

gral (PI) speed controller to generate a reference torque
[10]. The main aim of the speed controller is to control
the electromagnetic torque so that the speed error can
be minimized.

4.2.  Electromagnetic Torque

The expression for the electromagnetic torque (7¢) de-
veloped on the rotor can be obtained from the input
power and its various components as given by Eq. (15)
[13].

3P e e
T, 29 [(La — Lq)igs + Aay] Lgs- (15)

4.3. SPWM Current Controlled

Inverter Model

Figure [2] shows that the PMSM is fed from a voltage
source inverter with current control. The switching fre-
quency is usually fixed at carrier frequency (f.). The
switching signals for the power devices are determined
by the intersection of a triangular carrier wave of de-
sired switching frequency with error of the controlled
signal obtained from the reference and actual phase
currents. The comparison will result in a signal that
will demand the phase voltage to follow in such a way
that the current error of the respective phase is reduced
to zero [14].
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4.4. The d- and g-axes Stator

Current in Rotor Reference
Frame

By using Eq. , the d and ¢-axis model is constructed
which is shown in Fig.

4.5.  Creation of HF Revolving

Voltage Vector Injection

A balanced set of three phase voltage vector given in
Eq. @ with low amplitude (V;) and high frequency fi-
are transformed into d- and g-axes by using Eq. .
These voltages are transformed into the estimated po-
sition reference frames (refer Fig. [4)) and then added to
the controlled dg output voltages.

4.6. Demodulation Process

Figure [5] consists of BPF which aims at separating the
injected signal from the fundamental component. In
order to extract rotor position error needed for the
observerthe BP filteredsignal i.e. Eq. is demod-
ulated and then multiplied by e=7(“#®) [I5]. This signal
is then cleaned by a low-pass filter which removes the
second harmonic component leaving the desired error
term only. The rotor position thus can be estimated
from this signal using an observer [I6]. Simulink model
developed for this purpose is shown in Fig.

4.7. Controller and Observer

In order to extract rotor position and speed from the

position error a tracking observer is required. The
internal structure of the controller is developed in
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Fig. 3: Dynamic model of PMSM in rotor reference frame.
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Fig. 4: Common Revolving voltage injection scheme PMSM.
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Fig. 5: Implementation of demodulation process.

Simulink to perform this function (see Fig. @ The
detected rotor position error can be used for estimat-
ing the rotor position and speed [2]. Once the rotor
speed is estimated accurately, the rotor position can
be obtained by using an integrator. The electromag-
netic torque signal is added at the output of controller
for faster dynamics [2].

4.8. Simulation Results and

Discussion

A sensorless speed-controlled PMSM drive has been
developed in MATLAB environment to validate the
proposed speed and position estimation method. The
functionality of the implemented sensorless control
method is verified by testing the drive under different

operating conditions. The plots of speed, torque, cur-
rents, rotor position and position error are given. The
plotted variables are in normalized units (p.u.). The
test results of the sensorless controlled PMSM drive
employing HF signal injection scheme for five different
operating conditions are shown in Fig.[7] Fig.[§] Fig.[9
Fig. The parameters for PMSM used in the simu-
lation are given in the appendix. Sampling time is set
to 1le7% s. The rated speed of 628.6 rad-s—! is selected
as base speed. The injected frequency (f;) is 2 kHz
and the amplitude (V;) is 10 V. In order to verify the
accuracy of proposed estimated method and also to
study the response of position sensorless drive under
different dynamic conditions it is important to com-
pare the two different methods. In the first method the
rotor speed and position are estimated using the pro-
posed model as described in Fig. [2] while in the second
method, the same machine variables i.e. rotor speed
and position are calculated using the dynamic model
of PMSM which is treated as actual model.

4.9. Free Acceleration

Characteristics

In this test, the motor drive is allowed to accelerate
from 0 rad-s~! to rated speed i.e. 628.6 rad-s~! (1 p.u.)
considering 10 % of the rated load. From Fig. (a),
it is concluded that though the estimated rotor speed
matches the reference speed nearly at 0.09 s. The sim-
ulation resultsincluding a comparison of the actual and
estimated rotor angle are shown in Fig. d), while the
position error is plotted underneath it. As observed
from the Fig. e), there is no appreciable deviation in
rotor position trackingas long as the rotor speed is not
very high, till the correct rotor position is detected i.e.
after about 0.09 s.

Fig. 6: Simulink model of rotor position and speed estimatorus-
ing rotor position error tracking observer.

4.10. Low Speed and Standstill

Operation

One of the biggest challenges in sensorless vector con-
trol of PMSM is estimating rotor position at low speed
including standstill in which most of the methods fail.
In this test the speed control performance at low speed
including standstill under no load condition is shown
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Fig. 8:

Step change in reference speed from 10 rad-s~! to 0 rad-s~! at 0.075 s and back to 10 rad-s~! at 0.015 s under no load:

(a) Reference, estimated and actual rotor speed response, (b) Torque response, (c) Stator phase currents response, (d)
Estimated and actual rotor position, (e) Position error (56).

in Fig. [§(a). The speed command is varied from 10
rad- s~! to 0 rad- s~! at 0.075 s and back to 10 rad-
s~ at 0.15 s in step manner as it is represented in
Fig. a). The rotor speed is accelerated from standstill
to 10 rad- s~ ! starting from ¢ = 0 s so that the motor
successfully runs at the reference speed. Figure c)
presents that the stator phase currents response and
Fig. (b) presents the torque response which is just
sufficient to overcome friction except at transitions of
the sharp speed variations (see Fig. [§(a)) [17], [18].

4.11. Step Change in Reference

Speed

Figure [9] shows the simulation result for speed control
with a step change in reference speed at rated load.
At 0.05 s, the reference speed is step changed from

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

50 rad- s~! to 150 rad-s~!, then 200 rad-s~! at 0.1 s and
finally set to 250 rad- s~! at 0.15 s. As observed from
the Fig. @(d) the estimated rotor position waveform
follows the actual rotor position. Figure [9j(e) shows
the waveform of error in rotor position i.e. the differ-
ence between the estimated and actual rotor position
(60 = 6, — 0,.¢). From the plot of rotor position error it
is seen that the error is driven to zero which indicates
how well the position estimation scheme

4.12.  Speed Reversal Operation

In this test, the motor drive covers both the direction
of rotation. The speed reference is step changed from
375 rad-s~! to —375 rad-s~! at 0.1 s. From Fig. [10|(a)

and Fig. b) it is seen that with a positive speed
command the electromagnetic torque is driven to pos-
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Fig. 10: speed changes from 375 rad-s~! to -375 rad-s~! at 0.1 s under no load: (a) Reference, estimated and actual

speed, (b)

Torque, (c) Stator currents, (d) Estimated and actual position, (e) Position error (§0).

itive maximum and is maintained there until actual
speed matches the reference speed (w?) [15]. When
the estimated speed matches the reference speed, the
torque comes down to match the load torque and the
friction torque [19]. With a negative speed command
the electromagnetic torque is driven to negative max-
imum, which causes the reverse rotation. The speed
error causes ripples which are not even noticeable (see

Fig. [L0}c)) [19].

5. Experimental Setup and

Results

To support the simulation results, the complete pro-
posed scheme is implemented and tested using a dsPIC-

(©2016 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

DEM MCHV-2 development board manufactured by
Microchip Technology Inc. The carrier frequency of
the high speed PWM module is set to 20 kHz. The
three-phase bridge inverter with a power rating of
400 V / 6.5 A has six sets of IGBTs. The real test bench
employed for sensorless control of PMSM is presented
in Fig[TT] The proposed algorithm for speed estimation
is developed using MPLAB X IDE. The test motor is a
Y-connected, 1 HP, 4.5 Amp, 4000 rpm SMPMSM with
detailed parameters enumerated in Table . PMSM
is equipped with built-in position encoder used only for
monitoring the estimated speed not for speed control.
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Tab. 1: Rating and Parameters of a 1HP PMSM.

Rating
. Value and
Symbol Quantity units
N Rated speed 4000 rpm
f Rated frequency 50 Hz
Vi—L Rated line-line rms voltage 240 V
Irms Rated rms current 4 A
T Rated torque 6 N-m
Parameters
. Value and
Symbol Quantity anits
P Pole pairs 3
L Stator winding inductance 0.005129 (H)
Rs Stator winding resistance 3.0832 ()
52.6
Kg Back-EMF constant (Vpk-kRPM_l)
Permanent magnet
Apm flux-linkage 0.1887 (Wb)
K Torque constant 0.8554 (Nm-A~T)
Trmaz Peak torque 6 N-m
PPR Quadrature encoder 2048 PPR
5.1. Step Change in Reference Speed

Figure [12] Fig. [[3] Fig. [[4 and Fig. [I5 shows
the experimental results for sensorless speed con-
trol of PMSM with a step change in reference
speed command (refer Fig. under no load con-
dition. At 14 ms, the reference speed is step
changed from 2000 rpm to 3000 rpm, then from
3000 rpm to 2500 rpm at 47 ms and finally set to 2000
rpm at 119 ms. As observed from the Fig. [I4] the esti-
mated rotor position waveform tracks the actual rotor
position shown in Fig. very nicely. It is also clear
from the waveform of rotor speed error as shown in
Fig. [I5] how well the proposed scheme handles this
type of reference speed command.

Host

\ Computer

LCR
Meter

MCHV2
Development Board

SMPMSM

Power QEI
Cable Cable

High Voltage
Differential Probe

USB/Debug
Cables

Isolated QEI
Circuitry

Fig. 11: Photograph of experimental test bench.
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Fig. 12: Reference speed changes from 2000 rpm to 3000 rpm
at 14 ms, then to 2500 rpm at 47 ms and finally back to
2000 rpm at 119 ms under no load (Reference speed).
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Fig. 13: Reference speed changes from 2000 rpm to 3000 rpm
at 14 ms, then to 2500 rpm at 47 ms and finally back
to 2000 rpm at 119 ms under no load (Actual rotor
speed).

Estimated Rotor Speed
3,500

3,000
2,500

gl 2,000
& 1,500
1,000
500

0 25 50 75 100 125

Time (msec)

150 175 200

Fig. 14: Reference speed changes from 2000 rpm to 3000 rpm
at 14 ms, then to 2500 rpm at 47 ms and finally back
to 2000 rpm at 119 ms under no load (Estimated rotor
speed).

5.2. Low Speed Operation

Figure [16] Fig. [I7 Fig. [I8] Fig. [I9] shows the experi-
mentalresults for reference speed command of 400 rpm
under no load. From the waveform of rotor speed er-
ror presented in Fig. it is observed that there is an
error of approximately 20 rpm.
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Fig. 15: Reference speed changes from 2000 rpm to 3000 rpm
at 14 ms, then to 2500 rpm at 47 ms and finally back
to 2000 rpm at 119 ms under no load (Rotor speed
error).
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Fig. 16: Low speed operation for reference speed of 400 rpm
under no load (Actual rotor speed).
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Fig. 17: Low speed operation for reference speed of 400 rpm
under no load (Estimated rotor speed).
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Fig. 18: Low speed operation for reference speed of 400 rpm
under no load (Rotor speed error).
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Fig. 19: Low speed operation for reference speed of 400 rpm
under no load (Estimated rotor position).

6. Conclusions

The mathematical modeling for analysis of sensor-
less vector controlled PMSM drive and its imple-
mentation employing HF signal injection using MAT-
LAB/Simulink has been presented in this paper. It
is concluded from the literature that many sensorless
scheme cannot be used at low and zero speed where
back EMF signal is not available.To achieve operation
at such speed the signal injection scheme can be more
efficient than any other sensorless method. Finally it
can be concluded from the simulation and experimen-
tal results that the signal injection strategy appears
to be good at low speed and standstill but it cannot
give good performance at high and very high speed.
Performance of sensorless PMSM is investigated un-
der various operating conditions to verify the validity
and feasibility of the proposed model.It must be noted
that the HF signal injection method can beextended
to a wide speed range but not by increasing the in-
jection frequency as it may start overlapping with the
inverter’s switching frequency. But the problem faced
by this scheme is, it requires observer for successful op-
eration. Furthermore, HF signal injection technique is
robust to parameter variations.
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