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Abstract. The paper presents an instrumentation am-
plifier suitable for amplifying the current source trans-
ducer signals. It provides a voltage output. It has a
high gain, common mode rejection ratio and gain in-
dependent bandwidth. It uses three Operational Float-
ing Current Conveyors (OFCCs) and four resistors.
The effect of nonidealities of OFCC on performance
of proposed Transimpedance Instrumentation Amplifier
(TIA) is also analyzed. The proposal has been ver-
ified through SPICE simulations using CMOS based
schematicThe paper presents an instrumentation am-
plifier suitable for amplifying the current source trans-
ducer signals. It provides a voltage output. It has a
high gain, common mode rejection ratio and gain in-
dependent bandwidth. It uses three operational float-
ing current conveyors (OFCCs) and four resistors.
The effect of nonidealities of OFCC on performance
of proposed Transimpedance Instrumentation Amplifier
(TIA) is also analyzed. The proposal has been ver-
ified through SPICE simulations using CMOS based
schematic.
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1. Introduction

The Operational Floating Current Conveyor (OFCC)
[1], [2] is a versatile active building block which pro-
vides flexibility to the circuit designer. It inherits the
features of current conveyor and the current feedback

op-amp with additional current output terminal. The
availability of both high and low impedance ports at in-
put and output provides flexibility to circuit designer.
The OFCC has been used for implementing instrumen-
tation amplifier [3], read out circuit [4], logarithmic
amplifier [5], rectifier [6], filters [7], [8], [9], [10], [11],
variable gain amplifier [12], and wheatstone bridge [13].

An Instrumentation Amplifier (IA) is invariably used
as an input block in applications such as automotive
transducers [14], industrial process control [15], [16],
[17], linear position sensing [18] and bio-potential ac-
quisition systems [19], [20], [21], [22], [23], [24] to am-
plify differential signals and to suppress unwanted com-
mon mode signals. Generally the operational amplifier
based IA are classified as Voltage Mode IA (VMIA)
whereas current mode building block based IA are re-
ferred as Current Mode IA (CMIA). Another way to
classification is based on the type of input and output
signal on which IA is working. The Transimpedance
IA (TIA) is one among such classification where the
sensed current is amplified and converted into a volt-
age. There is limited literature available on TIAs [25],
[26], [27], and no OFCC based TIA is available in open
literature to the best of author’s knowledge. The de-
tails of available TIAs are comprehended in Tab. 1 ac-
cording to the number and type of active and passive
elements used along with the impedance presented at
input and output. The following points are observed
from Tab. 1:

• The opamp based topology [26] uses excessive
number of resistors.

• The input impedance is low for [27] which is
ideal for current sensing whereas a high input
impedance is presented for [25], [26].
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• The output impedance of [26], [27] is proper i.e.
low in contrast to the one provided by [25].

• Extra active elements are required for impedance
matching at input [25], [26] and output [25].

Tab. 1: Characteristics of available instrumentation amplifiers.

Ref. Active No. of Input Output
no. elements resistors impedance impedance
[25] 2 CCII+ 3 High High
[26] 3 opamps 10 High Low
[27] 3 OTRA 5 Low Low

It is clear from the above discussion that only topol-
ogy [27] provides proper input and output impedance
levels and does not require additional circuitry for
impedance matching. The aim of this paper is
to present an OFCC based TIA offering proper in-
put/output interface. It uses three active blocks and
four resistors i.e. same number of active blocks as [27]
and the lesser passive components than [27]. Both in-
put and output impedances of proposed topology are
low.

The paper is organized in five sections as follows:
Section 2. briefly discusses the basic characteristics of
OFCC and detailed description of proposed TIA struc-
ture. Section 3. describes behavior of proposed TIA
in presence of nonidealities. The simulation results are
presented in Section 4. followed by conclusions in
Section 5.

2. Proposed Circuit

The key component of the proposed circuit is the
OFCC block as shown in Fig. 1. It has two inputs
(X, Y) and three outputs (W, Z+, Z-).

X

Y

W

Z+

OFCC Z-

i
X I

w

i
Y

I
Z-

I
Z+

V
w

V
Z-

V
Z+

V
X

V
Y

Fig. 1: OFCC block.

The port X is a low impedance current input while
the port labeled Y is a high impedance voltage in-
put. The ports Z+ and Z- are high impedance cur-
rent outputs, where Z+ has positive polarity and Z-
has negative polarity. The terminal marked W is the
low impedance output voltage terminal. The terminal
characteristics of the OFCC are characterized by the

matrix given in Eq. (1):
IY
VX
VW
IZ+

IZ−

 =


0 0 0 0 0
1 0 0 0 0
0 Zt 0 0 0
0 0 1 0 0
0 0 −1 0 0



VY
IX
IW
VZ+

VZ−

 , (1)

where open loop transimpedance gain Zt is impedance
between the ports X and W and other symbols have
their usual meanings.
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Fig. 2: Proposed OFCC based TIA.

Figure 2 shows the proposed TIA circuit. It con-
sists of three OFCCs and four resistances. The third
OFCC block in Fig. 2 is simply used as a current to
voltage convertor which converts the amplified differ-
ence of currents that has been received as an input
to OFCC1 and OFCC2, into voltage. The differential
transimpedance gain of the instrumentation amplifier
for an ideal case is computed as follows.

The currents (iw1, iw2) flowing out of W terminals
of OFCC1 and OFCC2 respectively, are:

iw1 = −
[
iin1 +

R1

RG
(iin1 − iin2)

]
, (2)

iw2 = −
[
iin2 +

R1

RG
(iin2 − iin1)

]
. (3)

The output voltage is computed as:

vout = −R2(−iw1 + iw2) = R2(iw1 − iw2) =

=

[
(iin2 − iin1)

(
1 +

2R1

RG

)]
.

(4)

Using Eq. (4), the differential gain (Ad) is obtained as:

Ad =
vout

iin2 − iin1
=

(
1 +

2R1

RG

)
R2. (5)
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3. Non Ideal Analysis

Practically, there are two kinds of OFCC non-idealities.
The first type of nonidealities comes from tracking er-
rors between port voltages and currents and their ef-
fect depend strongly on topology. As the Y terminal
in proposed topology is grounded the performance is
unaffected due to voltage tracking errors. Considering
the current tracking error, the currents at Z+ and Z-
terminals are represented as:

iZ+ = αiw2, (6)

iZ− = −γiw1, (7)

where α and γ are non ideality constants.

Therefore, Eq. (4) modifies to:

vout =

[
(αiin2 − γiin1) + . . .

. . .+

(
(α+ γ)

R1

RG
(iin2 − iin1)

)]
R2.

(8)

Assuming α = γ = 1 in Eq. (8) the differential gain
(Ad) is written as:

Ad =
vout

iin2 − iin1
=

(
1 +

2R1

RG

)
R2. (9)

Considering iin1 = iin2 = icm in Eq. (8) for com-
mon mode operation, the common mode gain (Acm) is
obtained as:

Acm =
vout
icm

= (α− γ)R2. (10)

Therefore the CMRR of the final circuit is:

CMRR =
Ad

Acm
=

1

α− γ

(
1 +

2R1

RG

)
. (11)

The second nonideality comes due to finite tran-
simpedance gain Zt and its frequency dependence
which is approximated as Zt = 1/(sCp) at high fre-
quencies. The value of Cp is (Zto ωtc), where Zto and
ωtc represent open loop transimpedance gain and its
cut off frequency respectively.

Considering finite Zt, Eq. (4) is recalculated as

vout = [ε1(s)iw1 − ε2(s)iw2]ε3(s)R2, (12)

vout =

[(
(iin2 − iin1)(ε2(s)− ε1(s))

R1

RG

)
+ . . .

. . . (ε2(s)iin2 − ε1(s)iin1)

]
ε3(s)R2,

(13)

where εi(s) =
1

1 + sCpiR1
for i = 1, 2 and ε3(s) =

1

1 + sCp3R2
.

Assuming ε1(s) = ε2(s), differential gain is calcu-
lated as:

Ad =

(
1 +

2R1

RG

)
R2εuc, (14)

where εuc =
1

1 + sCp3R2
· 1

1 + sCp1R1
and is uncom-

pensated error function.

Taking iin1 = iin2 = icm the common mode gain is
given by:

Acm =
sR1R2(Cp1 − Cp2)

(1 + sCp1R1)(1 + sCp2R1)(1 + sCp3R2)
. (15)

Therefore the CMRR becomes:

CMRR =
Ad

Acm
=

=

(
1 +

RG

2R1

)(
2 + sR1(Cp1 + Cp2)

s(Cp2 − Cp1)RG

)
.

(16)

4. Simulation Results

The CMOS based OFCC implementation [12] as shown
in Fig. 3, is used for verifying functionality of proposed
TIA. The transistor aspect ratios are given in Tab. 2.
SPICE simulations are carried out using supply volt-
ages of ±1.5 V and bias voltages of ±0.8 V. The simu-
lated differential gain response of the proposed TIA is
depicted in Fig. 4 for RG = 1 kΩ, R1 = 5 kΩ and R2

is varied from 1 kΩ to 3 kΩ in step of 1 kΩ in order to
obtain different gains. The CMRR frequency response
is shown in Fig. 5. It may be noted that CMRR is
independent of gain and has a bandwidth of 112 kHz.
Figure 6 shows the noise spectral analysis of the pro-
posed TIA using the same component values as those
taken for obtaining differential gain response. It is ob-
served that the output noise level has small magnitude.
The power consumption of the proposed OFCC based
TIA is found to be 1.5 mW.
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Fig. 3: CMOS schematic of OFCC [12].

5. Conclusion

In this paper, an OFCC based TIA is presented and
simulated. The circuit requires only three OFCCs,
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Tab. 2: Characteristics of available instrumentation amplifiers.

Transistor W (µm)/L (µm)
M1, M2 50/1

M3, M4, M11, M12, 50/2.5M14, M16, M18, M20
M5, M7, M10, M15, 20/2.5M17, M19, M21

M6, M8 40/2.5
M9, M13 100/2.5

Fig. 4: Frequency response of the proposed TIA.

Fig. 5: CMRR of the proposed TIA for different gain values.

Fig. 6: Noise spectral density for different values of gain.

three feedback resistors and one grounded resistor. It
works with current mode of input in order to pro-
duce an amplified output without using complex de-
signs. The AC analysis proves the efficiency of this
new circuit and the huge bandwidth it possesses. The
proposed topology offers advantages over the existing
operational amplifiers based TIAs, in terms of a wider
bandwidth that stays independent of the finite open
loop gain of the TIA. The proposed circuit also of-
fers low component count as compared to the existing
OTRA based design.
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