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Abstract. This paper proposes a Hopfield Lagrange
Network (HLN) based method (HLNM) for economic
emission dispatch of fixed head hydrothermal systems.
HLN is a combination of Lagrange function and con-
tinuous Hopfield neural network where the Lagrange
function is directly used as the energy function for the
continuous Hopfield neural network. In the proposed
method, HLN is used to find a set of non-dominated
solutions and a fuzzy based mechanism is then exploited
to determine the best compromise solution among the
obtained ones. The proposed method has been tested on
four hydrothermal systems and the obtained results in
terms of total fuel cost, emission, and computational
time have been compared to those other methods in
the literature. The result comparisons have indicated
that the proposed method is favorable for solving the
economic emission dispatch problem of fixed-head hy-
drothermal systems.
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1. Introduction

The short term hydro-thermal scheduling (HTS) prob-
lem is to determine the power generation among the
available thermal and hydro power plants so that the
total fuel cost of thermal units is minimized over a
scheduled time of a single day or a week while satisfy-
ing both equality and inequality constraints including
power balance, available water, and generation lim-

its of both thermal and hydro plants [1]. In practi-
cal systems, thermal power generating stations are the
sources of carbon dioxide (CO2), sulfur dioxide (SO2),
and nitrogen oxides (NOx) causing atmospheric pollu-
tion [2]. Therefore, the optimal scheduling of genera-
tion in a hydrothermal system involves the allocation of
generation among the hydro and thermal plants to si-
multaneously minimize the fuel cost and emission level
of thermal plants satisfying the various constraints on
the hydraulic and system network becomes a practi-
cal requirement. In the past decades, several conven-
tional methods have been used to solve the HTS prob-
lem neglecting environmental aspects such as lambda-
gamma iteration method (LGM) [1], an effective con-
ventional method (ECM) based on Lagrange multiplier
theory [3], dynamic programming (DP) [4], Lagrange
relaxation (LR) method [5], and decomposition and
coordination method [6]. Among these methods, La-
grange multiplier theory based method does not find
out optimal solution and it must be used together
with other optimization techniques [7] whilethe DP
and LR methods are more popular ones. However,
the computational and dimensional requirements of the
DP method increase drastically with large-scale system
planning horizon, which is not appropriate for dealing
with large-scale problems [8]. On the contrary, the
LR method is more efficient and can deal with large-
scale problems. However, the solution quality of the LR
for optimization problems depends on its duality gap
which is a result of the dual problem formulation and
might oscillate, leading to divergence for some prob-
lems with operation limits and non-convexity of incre-
mental heat rate curves of the generators. Besides, the
other methods require simplifications to solve the orig-
inal model which may yield sub-optimal solutions [2].
Several optimization techniques have been proposed to
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deal with the economic emission dispatch problems. A
particle swarm optimization and gamma based method
(γ-PSO) has been suggested in [1] to solve the prob-
lem. Similar to LGM [1], the coordination equations
are used in the iterative algorithm to obtain optimal so-
lution in the γ-PSO method. Unlike existing PSO [9],
each particle in the method is represented with respect
to gamma, leading to easier convergence. Two novel
search methods have been presented in [10] for deal-
ing with the problem. Those are hybrid algorithm and
heuristic searches with genetic algorithm (GA). Both
techniques can achieve convergence with a smallermax-
imum number of generations. However, the computa-
tional time of the heuristic searches with GA is slower
than the one of the hybrid algorithm. An improved
bacterial foraging algorithm (BFA) has been applied
to solve the short-term HTS problem considering the
environmental aspects given in [11]. A non-dominated
sorting genetic algorithm-II (NSGA II) method [12]
has been applied to economic environmental dispatch
of fixed head hydrothermal scheduling problem with
both convex and non-convex fuel cost and emission
functions. Another method based on integration of
predator-prey optimization and Powell search method
(PPO-PS) [13] has been implemented for solving eco-
nomic emission dispatch for fixed-head hydrothermal
systems. The PPO-PS is a powerful method for solving
the problem,however, there are many control param-
eters in this method and an appropriate selection of
penalty parameters for a good performance is really a
difficult work This paper proposes a Hopfield Lagrange
network (HLN) based method (HLNM) for solving the
economic emission dispatch of fixed-head hydrothermal
systems. The proposedHLN method is a combination
of Lagrange function and continuous Hopfield neural
network where the Lagrange function is directly used
as the energy function for the continuous Hopfield neu-
ral network. In addition, the HLN is developed by ap-
plying the augmented Hopfield terms;therefore, HLN
can tackle oscillation of conventional Hopfield network
and get faster convergence as well as obtain higher
quality solutions. There is a fact that the proposed
HLN is a family of deterministic algorithms, so it also
copes with the limited applicability to objective func-
tion not to be differentiable. Consequently, the HLN
cannot deal with systems where fuel cost and emission
functions are represented as nonconvex curves.In the
proposed method, HLN is used to find a set of non-
dominated solutions and a fuzzy based mechanism is
then exploited to determine the best compromise solu-
tion among the obtained ones. The proposed method
has been tested on four hydrothermal systems and the
obtained results in terms of total fuel cost, emission,
and computational time have been compared to those
other methods in the literature.

2. Problem Formulation

Consider an electric power system having N1 thermal
plants and N2 hydro plants. The problem is to find the
active power generation of each plant in the system so
as the total generation cost and emission of thermal
plants is minimized over an M-schedule period time
satisfying power balance, water availability constraint,
and generation limits.

2.1. Fuel Cost Objective

The fuel cost function F1 for all thermal units is ap-
proximated by a quadratic function as follows [12]:

F1 =

M∑
k=1

N1∑
i=1

tk
{
afsi + bfsiPsik + cfsiP

2
sik

}
, (1)

where afsi, bfsi, cfsiarefuel cost coefficients of thermal
plant i; Psik is power output of thermal unit i at subin-
terval k; tk is the duration of subinterval k.

2.2. Emission Objective

The atmospheric pollutants such as sulphur oxides
(SOx) and nitrogen oxides (NOx) caused by fossil-
fueled thermal generator can be modeled separately.
Each gaseous emission is represented by quadratic
function as follows [2]:

NOsik = α1si + β1siPsik + γ1siP
2
sik, (2)

SOsik = α2si + β2siPsik + γ2siP
2
sik, (3)

COsik = α3si + β3siPsik + γ3siP
2
sik, (4)

and then the total emission can be calculatedas follows
[2]:

F2 = w1NOsik + w2SOsik + w3COsik, (5)

where w1, w2, and w3 are positive weighting factors
of the individualgaseous emission contribution to the
emission objective; α1si, β1si, and γ1si are emission co-
efficients for NOx; α2si, β2si, and γ2si are emission co-
efficients for SOx; and α3si, β3si, and γ3si are emission
coefficients for CO2.

1) Load Demand Equality Constraint

The total power generation from thermal and hydro
plants satisfies the total power demand of the system
and transmission losses:

N1∑
i=1

Psik +
N2∑
j=1

Phjk − PLK − PDK = 0,

k = 1, 2, . . . ,M,

(6)
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where the power losses in transmission lines are calcu-
lated as follows:

PLK =
N1+N2∑
i=1

N1+N2∑
j=1

PikBijPjk+

+
N1+N2∑
i=1

B0iPik +B00,

(7)

where PDk, PLk are load demand, transmission loss
during subinterval k, in MW; Phjk is generation output
of hydro unit j during subinterval k, in MW; Bij , B0i,
and B00 are loss formula coefficients of transmission
system.

2) Water Availability Constraints

The total water discharge for each hydro plant during
the schedule time is fixed:

M∑
k=1

tkqjk =Wj , j = 1, 2, . . . , N2, (8)

where Wj is volume of water available for generation
by hydro plant j during the scheduled period, and the
water discharge qjk for hydro unit j at subinterval k is
determined by:

qjk = ahj + bhjPhjk + cjP
2
hjk, (9)

where ahj , bhj , chj are water discharge coefficients of
hydro unit j.

3) Generator Operating Limits

The power output of thermal and hydro plants should
be limited between their upper and lower boundaries:

Psimin ≤ Psik ≤ Psimax,
i = 1, 2, . . . , N1, k = 1, 2, . . . ,M.

(10)

Phjmin ≤ Phjk ≤ Phjmax,
i = 1, 2, . . . , N2, k = 1, 2, . . . ,M.

(11)

where Psimax, Psimin are maximum and minimum
power output of thermal unit i, respectively; and
Phjmax, Phjmin are maximum and minimum power
output of hydro plant j, respectively.

3. HLN for the Problem

The Lagrange function L of the problem is formulated
as follows:

L =
M∑
k=1

N1∑
i=1

tk
(
asi + bsiPsik + csiP

2
sik

)
+

M∑
k=1

λk

(
PLk + PDk −

N1∑
i=1

Psik −
N2∑
j=1

Phjk

)
+

N2∑
j=1

γhj
M∑
k=1

(tkqjk −Wj) .

(12)

In Eq. (12) λk, γhj are Lagrangian multipliers as-
sociated with power balance and water constraint, re-
spectively. Further:

asi = ψafsi+(1−ψ)(w1α1si+w2α2si+w3α3si), (13)

bsi = ψbfsi + (1−ψ)(w1β1si +w2β2si +w3β3si), (14)

csi = ψcfsi + (1− ψ)(w1γ1si +w2γ2si +w3γ3si), (15)

0 ≤ ψ ≤ 1, (16)

where ψ is weighting factor for combination of objec-
tives [14].

The energy function E of the problem is described
in terms of neurons is determined in Eq. (17),

E =
M∑
k=1

N1∑
i=1

tk
(
asi + bsiVsik + csiV

2
sik

)
+

M∑
k=1

Vλk

(
PLk + PDk −

N1∑
i=1

Vsik −
N2∑
j=1

Vhjk

)
+

N2∑
j=1

Vγhj

(
M∑
k=1

tkqjk −Wj

) (17)

+
M∑
k=1

(
N1∑
i=1

∫ Vsik

0
g−1(V )dV +

N2∑
j=1

∫ Vhjk

0
g−1(V )dV

)
,

where Vλk and Vγhj are outputs of the multiplier neu-
rons associated with power balance and water con-
straint, respectively; Vhjk, Vsik are output of contin-
uous neuron hjk, sik representing Phjk, Psik, respec-
tively. The dynamics of the model for updating neuron
inputs are defined as follows:

dUsik
dt

=
∂E

∂Vsik
= −

{
tk(bsi + 2csiVsik)

+Vλk

(
∂PLk

∂Vsik
− 1
)
+ Usik

}
(18)

dUhjk
dt

=
∂E

∂Vhjk
= −

 Vλk

(
∂PLk

∂Vhjk
− 1
)

+Vγhj

(
tk

∂qjk
∂Vhjk

)
+ Uhjk

 (19)

dUλk
dt

= +
∂E

∂Vλk
= PDk+PLk−

N1∑
i=1

Vsik−
N2∑
j=1

Vhjk (20)

dUγhj
dt

= +
∂E

∂Vγhj
=

M∑
k=1

tkqjk −Wj . (21)

The inputs of neurons at step n are updated:

U
(n)
sik = U

(n−1)
sik − αsi

∂E

∂Vsik
, (22)

U
(n)
hjk = U

(n−1)
hjk − αhj

∂E

∂Vhjk
, (23)

U
(n)
λk = U

(n−1)
λk + αλk

∂E

∂Vλk
, (24)

U
(n)
γhj = U

(n−1)
γhj + αγhj

∂E

∂Vγhj
, (25)
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where Uλk, Uγhj are inputs of the multiplier neurons;
Usik and Uhjk are inputs of the neurons sik and hjk
respectively; αλk, αγh are step sizes for updating of
multiplier neurons; αsi, αhj are step sizes for updating
of continuous neurons.

The outputs of continuous neurons and multiplier
neurons:

Vsik = g(Usik) =

(Psimax − Psimin)
(

1+tanh(σUsik)
2

)
+ Psimin,

(26)

Vhjk = g(Uhjk) =

(Phjmax − Phjmin)
(

1+tanh(σUhjk)
2

)
+ Phjmin,

(27)

where σ is slope of the sigmoid functionwhich deter-
mines the shape of the sigmoid function. The outputs
of multiplier neurons are determined using a transfer
function:

Vλk = Uλk, (28)

Vγhj = Uγhj , (29)

3.1. Initialization

The initial outputs of continuous neurons are set at
their middle limits and the multiplier neurons are set
as follows:

V
(0)
λk =

1

N1

N1∑
i=1

tk

(
bsi + 2csiV

(0)
sik

)
/

(
1− ∂PLk

∂Vsik

)
, (30)

V
(0)
γhj =

1

M

M∑
k=1

V
(0)
λk

(
1− ∂PLk

∂Vhjk

)
/

(
tk
∂qjk
∂Vhjk

)
. (31)

3.2. Stopping Criteria

The algorithm will be terminated when either the max-
imum error Errmax is lower than a predefined threshold
ε or maximum number of iterations Nmax is reached.

4. Best Compromise Solution
by Fuzzy-Based Mechanism

The economic emission dispatch of hydrothermal sys-
tem is a very complex problem due to many variables
and objectives. Moreover, three cases of dispatch for
each system consisting of economic dispatch, emission
dispatch and economic emission dispatch are carried
out. For economic dispatch, only fuel cost is minimized
while emission is neglected and for emission dispatch,
only emission is minimized whereas the fuel cost is ne-
glected. On the contrary, for economic emission dis-
patch, both fuel cost and emission are considered and

the compromise solution for the economic emission dis-
patch must satisfy both fuel cost and emission objec-
tives. However, the determination of the compromise
is not simple since there is a conflict between the two
objectives for an optimal solution. In fact, if a solution
tends to have good fuel cost, its emission will become
worse and vice versa. Consequently, the Fuzzy-Based
Mechanism is carried out to determine the best com-
promise. In the technique, two weight factors associate
with fuel objective and emission objective are employed
to determine a set of non-dominated solutions and then
the cardinal priority of each non-dominated solution is
calculated. As a result, solution with the highest value
of cardinal priority is chosen as a compromise solution.
On the other hand, the set of non-dominated solutions
has a significant impact on the determination of the
compromise solution. If the number of non-dominated
solutions is low, a good compromise can be skipped
and if a large number of non-dominated solutions is
calculated, the task for obtaining the solution is time
consuming. Therefore, the determination of the best
compromise is not simple and must be carefully car-
ried out. In this paper, the best compromise solution
for the problem is determined using the fuzzy satisfy-
ing method [14]. The fuzzy goal is represented in linear
membership function as follows [14]:

µ(Fj) =


1 if Fj ≤ Fjmin,

Fjmax − Fj
Fjmax − Fjmin

if Fjmin < Fj < Fjmax,

0 if Fj ≥ Fjmax,
(32)

where Fj is the value of objective j; Fjmax and Fjmin

are maximum and minimum values of objective j, re-
spectively. For each k non-dominated solution, the
membership function is normalized as follows [15]:

µkD =

Nobj∑
i=1

µ(F ki )/

Np∑
k=1

Nobj∑
i=1

µ(F ki ), (33)

where µkD is the cardinal priority of k − th non-
dominated solution, µ(Fj) is membership function of
objective j, Nobj is number of objective functions, and
Np is number of Pareto-optimal solutions. The solu-
tion that attains the maximum membership µkD in the
fuzzy set is chosen as the ’best’ solution based on car-
dinal priority ranking [16]:

Max
{
µkD : k = 1, 2, . . . , Np

}
. (34)

5. Numerical Results

The proposed method has been tested on four systems
where the first system has one thermal and one hydro
power plant, the second one consists of one thermal
and two hydropower plants, the third and last ones
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Tab. 1: Result comparison for the economic dispatch for the first three systems (ψ = 1, w1 = w2 = w3 = 0).

System Method Fuel cost
($)

Emission (kg) CPU time
(s)NOx SO2 CO2

1

LGM [2] 96 024.42 14 829.94 44 111.89 247 838.53 -
EPSO [2] 96 024.61 14 830.00 44 111.98 247 839.50 -
γ-PSO [2] 96 024.40 14 829.93 44 111.88 247 838.43 -

HLN 96 024.37 14 834.48 44 112.91 247 696.31 0.92

2

LGM [2] 848.241 575.402 4 986.16 2 951.46 -
EPSO [2] 848.204 575.513 4 986.00 2 952.00 -
γ-PSO [2] 847.908 575.477 4 985.74 2 951.65 -

HLN 848.349 575.261 4 986.42 2 950.19 0.4

3

LGM [2] 53 053.79 28 199.21 74 867.81 454 063.64 -
EPSO [2] 53 053.79 28 199.21 74 867.80 454 063.56 -
γ-PSO [2] 53 053.79 28 199.21 74 867.80 454 063.63 -

HLN 53 051.61 28 556.53 74 954.09 458 621.31 0.32

Tab. 2: Result comparison for the emission dispatch for the first three problems (ψ = 0, w1 = w2 = w3 = 1/3).

System Method Fuel cost
($)

Emission (kg) CPU time
(s)NOx SO2 CO2 NOx+SO2+CO2

1

LGM [2] 96488.08 14376.32 44202.36 242406.08 300984.76 -
EPSO [2] 96488.38 14376.41 44202.51 242407.42 300986.33 -
γ-PSO [2] 96488.08 14376.32 44202.36 242406.08 300984.76 -

HLN 96809.80 14267.87 44312.40 241263.61 299843.87 0.49

2

LGM [2] 851.98 571.99 4993.75 2922.82 8488.56 -
EPSO [2] 853.15 571.73 4995.19 2922.14 8489.06 -
γ-PSO [2] 851.98 571.99 4993.75 2922.82 8488.56 -

HLN 851.91 572.00 4993.66 2922.81 8488.47 1.8

3

LGM [2] 54359.64 21739.27 74131.82 373122.57 468993.66 -
EPSO [2] 54359.66 21739.27 74131.82 373122.57 468993.66 -
γ-PSO [2] 54359.53 21739.19 74131.68 373121.27 468992.14 -

HLN 55392.75 19986.58 73824.88 350972.26 444783.71 0.12

have two thermal and two hydropower plants. The
data for the thermal and hydro plants in the first three
systems are from [3] whereas emission data are from
[16]. The data for the last one are from [12]. The
proposed method is coded in Matlab 7.2 programming
language and run on an Intel 1.8 GHz with 4GB of
RAM PC.

5.1. The First Three Systems

The objectives of the test systems in this section in-
clude one fuel cost and three emissions of NOx, SO2

and CO2 scheduled in 24 subintervals with one hour
for each. For each system, three cases of dispatches are
considered including economic dispatch (ψ = 1, w1 =
w2 = w3 = 0), emission dispatch (ψ = 0, w1 =
w2 = w3 = 1/3), and economic emission dispatch
(ψ = 0.5, w1 = w2 = w3 = 1/3). The obtained results
from the proposed method for three dispatch cases in-
cluding economic dispatch, emission dispatch, and eco-
nomic emission dispatch for the three test systems are
compared to those from other methods including LGM,
EPSO, and γ-PSO in [2] as given in Tab. 1, Tab. 2, and
Tab. 3. For the economic dispatch, the proposed HLN
can obtain better total costs than the others except for
the System 2 where the cost is slightly higher than for
the others. For the emission dispatch, the proposed
HLN can obtain less total emission than the others for

all test systems. In the economic emission dispatch,
there is a trade-off between total cost and emission ob-
jectives and the obtained solutions from the methods
are non-dominated as in Tab. 3. The total computa-
tional time for each system for the three cases is given
in Tab. 4. The study in [2] has not reported computer
processor and we fail to compare the processor. How-
ever, as indicated in Tab. 4 in the paper, HLN is very
fast compared to LGM [2], EPSO [2], γ-PSO [2] since
HLN has gotten optimal solutions with 1.51 seconds
for System 1, 3 seconds for System 2 and 0.740 sec-
ond for System 3 whereas that time from LGM is 10
seconds higher, from EPSO is about 100 seconds and
from γ-PSO is about 40 seconds. Clearly, these meth-
ods are time consuming and it is very slow for conver-
gence as compared to HLN. Convergence characteris-
tics obtained by HLN in terms of maximum error and
number of iterations for economic dispatch of System 1,
System 2 and System 3 are depicted in Fig. 1, Fig. 2
and Fig. 3. Clearly, HLN has obtained the optimal
solution with the lowest number of iterations at Sys-
tem 3, 2594 iterations and with the highest number of
iterations at System 1, 6263 iterations. Consequently,
the convergence time for economic dispatch of the Sys-
tem 1 is the longest meanwhile this time for System 3
is the fastest and they are respectively 0.92 and 0.32
as reported in Tab. 1. The optimized control variables
for test System 1 is given in table Tab. A in Appendix
section.
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Tab. 3: Result comparison for the economic emission dispatch of the first three system (ψ = 0.5, w1 = w2 = w3 = 1/3).

System Method Fuel cost
($)

Emission (kg) CPU time
(s)NOx SO2 CO2 NOx+SO2+CO2

1

LGM [2] 96421.702 14384.101 44176.312 242456.004 300984.76 -
EPSO [2] 96421.725 14384.108 44176.324 242456.109 300986.33 -
γ-PSO [2] 96421.46 14384.03 44176.195 242454.92 300984.762 -

HLN 96465.712 14328.17 44181.95 241776.424 300286.544 0.1

2

LGM [2] 851.208 572.235 4992.707 2923.986 8488.928 -
EPSO [2] 851.079 572.264 4992.547 2923.061 8487.872 -
γ-PSO [2] 852.388 571.97 4994.167 2923.301 8489.438 -

HLN 850.065 572.723 4991.026 2927.027 8490.776 0.8

3

LGM [2] 54337.014 21745.127 74144.989 373165.02 469025.136 -
EPSO [2] 54337.027 21745.138 74115.007 373165.186 469025.331 -
γ-PSO [2] 54336.888 21745.021 74114.821 373163.42 469023.262 -

HLN 55158.62 20031.652 73731.958 351363.758 445127.368 0.3
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Fig. 1: Convergence characteristic obtained by HLN for eco-
nomic dispatch of System 1.
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Fig. 2: Convergence characteristic obtained by HLN for eco-
nomic dispatch of System 2.

5.2. The Fourth System

The test system in this case includes one total cost
function and one emission function scheduled in three
subintervals with eight hours for each [12]. The pro-
posed HLN method is applied for obtaining the opti-
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Fig. 3: Convergence characteristic obtained by HLN for eco-
nomic dispatch of System 3.

Tab. 4: Computational time comparison for the first three sys-
tems.

Method System 1 System 2 System 3
LGM [2] 14.83 11.46 12.26
EPSO [2] 95.36 83.73 105.0
γ-PSO [2] 43.44 39.27 49.01

HLN 1.51 3 0.740

mal solutions for the economic, emission and economic
emission dispatches.

The values of w1, w2 and w3 in Eq. (13), Eq. (14),
Eq. (15) are fixed at 1, 0 and 0, respectively. The value
of ψ in Eq. (16) is set to one and zero for the economic
and emission dispatches, respectively. For the case of
economic emission dispatch, we have determined 11
non-dominated solutions to form Pareto optimal front
with the change of weight factor ψ from 0 to 1. The
best compromise solution from the obtained 11 non-
dominated solutions is determined by the fuzzy based
mechanism in Section 4. The obtained results in terms
of fuel cost, emission and computational time for the
three cases from the proposed method are compared to
those from PSO, PSO with penalty method (PSO-PM),
predator-prey optimization (PPO), PPO with penalty
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Tab. 5: Result comparison for the three cases of dispatch of the fourth system.

Method Economic dispatch Emission dispatch Compromise dispatch
Cost ($) CPU (s) Emis. (lb) CPU (s) Cost ($) Emis. (lb) CPU (s)

PSO-PM [13] 65741 18.25 585.67 18 65821 620.78 18.98
PSO [13] 65241 18.32 579.56 18.31 65731 618.78 19.31

PPO-PM [13] 64873 16.14 572.71 15.93 65426 612.34 16.53
PPO [13] 64718 15.99 569.73 15.18 65104 601.16 16.34

PPO-PS-PM[13] 64689 15.98 568.78 15.92 65089 600.24 16.15
PPO-PS [13] 64614 15.89 564.92 15.45 65058 594.18 16.74

HLN 64576 0.3 579.12 0.68 64807 617.64 0.74

method (PPO-PM), PPO-PS with penalty method
(PPO-PS-PM), and PPO-PS in [13] as given in Tab. 5.
As observed from the table, the proposed method can
obtain better cost than other methods for the two cases
of economic and combined economic emission dispatch.
However, HLN gets lower emission than PSO-PM and
PSO only and higher emission than rest of methods
for emission dispatch and economic emission dispatch.
Furthermore, as seen in Tab. 5 HLN has been run un-
der one second for each dispatch case while it has taken
from 15 to 20 seconds for other methods. Obviously,
HLN is much faster than these methods although no
computer has been reported for the methods in [13]
and computer processor comparison has not been per-
formed. Figure 4 shows the convergence characteristic
obtained by HLN for economic dispatch of the system.
Obviously, the applied HLN method can obtain the
optimal solution for the case with fewer number ofiter-
ations than that for three systems above and therefore
the execution time for the system is shorter than that
for the three systems.
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Fig. 4: Convergence characteristic obtained by HLN for eco-
nomic dispatch of System 4.

6. Conclusions

In this paper, a Hopfield Lagrange network based
method has been efficiently implemented for solv-
ing the economic emission short-term hydrothermal

scheduling problem. The proposed method is a com-
bination of Lagrange function and continuous Hopfield
neural network for solving optimal single-objective dis-
patch problem and a fuzzy based mechanism for ob-
taining the best compromise solution among several
non-dominated solutions. The Hopfield Lagrange net-
work is an improvement of the continuous Hopfield
neural network by using the Lagrange function as its
energy function. The advantages of the Hopfield La-
grange network are that it is simple, fast, and effi-
cient for solving optimization problems. The proposed
method has been tested on four systems with differ-
ent number of objectives and the obtained results have
been compared to those from other methods in the lit-
erature. The result comparisons have indicated that
the proposed method can obtain better solution than
many other methods with shortercomputational time.
Therefore, the proposed method can be very favored
for solving economic emission dispatch of short-term
fixed-head hydrothermal problems.
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Appendix

Tab. A: Control variables for System 1 with four objective function.

Subinterval Economic dispatch Emission dispatch Economic emission
dispatch

Vsk (MW) Vhk (MW) Vsk (MW) Vhk (MW) Vsk (MW) Vhk (MW)
1 231.8904 235.1858 273.9742 191.3175 262.9423 202.7468
2 203.7237 232.3999 255.0545 178.9122 241.6737 192.7512
3 194.3511 231.4743 248.7678 174.7781 234.6012 189.4216
4 186.8589 230.735 243.7456 171.4712 228.9492 186.7587
5 180.3075 230.0889 239.3563 168.578 224.0081 184.4292
6 199.0364 231.9369 251.91 176.8451 238.1364 191.0863
7 262.0162 238.1735 294.2544 204.5551 285.7133 213.4201
8 372.883 249.2464 369.2893 252.9993 369.7242 252.5449
9 431.1394 255.1173 408.9719 278.2835 414.0031 273.0073
10 440.7196 256.0864 415.5146 282.4302 421.2937 276.3661
11 459.9057 258.0303 428.6318 290.7249 435.9021 283.0872
12 469.5116 259.0052 435.2064 294.873 443.2198 286.4496
13 350.0483 246.9553 353.7829 243.0565 352.3935 244.5063
14 373.8355 249.3421 369.9367 253.4137 370.4474 252.88
15 384.3185 250.3959 377.0649 257.9718 378.4086 256.5668
16 419.6542 253.9568 401.1346 273.3081 405.2662 268.9784
17 484.8987 260.569 445.7479 301.5109 454.9472 291.8319
18 503.1996 262.4327 458.3018 309.395 468.9038 298.2275
19 464.7076 258.5175 431.9177 292.7989 439.5598 284.7682
20 443.5954 256.3775 417.4794 283.6742 423.4827 277.3739
21 397.6752 251.7403 386.1555 263.774 388.5566 261.2612
22 354.8016 247.4318 357.0085 245.1277 355.9999 246.1804
23 312.0972 243.1598 328.071 226.4914 323.6217 231.1235
24 277.1106 239.6738 304.4332 211.1759 297.1317 218.7611
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