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Abstract. The analysis and design of electromechan-
ical devices involve the solution of large sparse linear
systems, and require therefore high performance algo-
rithms. In this paper, the primal Domain Decompo-
sition Method (DDM) with parallel forward-backward
and with parallel Preconditioned Conjugate Gradient
(PCG) solvers are introduced in two-dimensional par-
allel time-stepping finite element formulation to ana-
lyze rotating machine considering the electromagnetic
field, external circuit and rotor movement. The pro-
posed parallel direct and the iterative solver with two
preconditioners are analyzed concerning its computa-
tional efficiency and number of iterations of the solver
with different preconditioners. Simulation results of
a rotating machine is also presented.
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1. Introduction

The numerical field calculation of electromechanical
devices is a very complex task, because a lot of different
physical aspects should be considered for the appropri-
ate modelling. The performances of electrical equip-
ments are not defined only by their electromagnetic
field, because the electromagnetic field has strong in-
teraction between the following quantities: electromag-
netic field distribution, mechanical oscillation equa-

tion, external circuits, etc. The electric machines are
the most obvious examples.

The Finite Element Method (FEM) [1], [2] is a well-
known technique for the solution of a wide range of
problems in science and engineering. However, a few
years back, the simulation of complex structures con-
sidering multiple aspects in a same set of equations was
restrictive, due to the unavailability of enough com-
puter capabilities for data processing. However, nowa-
days, thanks to the improvements in the computer ar-
chitecture, the analysis of complex electromagnetic sys-
tems is more affordable.

But, the analysis of complex systems, e.g. rotating
electrical machine analysis considering movement and
voltage drive source require a computing effort to solve
large sparse linear systems. These large linear systems
arise from the discretization with the help of finite el-
ement method. The solution of these large equation
systems are very resource-intensive and time consum-
ing, wherein the resources and time of the calculation
plays an important role for designers and researchers.
Therefore, the solution of a complex system should be
parallelised in order to speed-up the numerical compu-
tations with less computer requirement.

In this paper, we propose to solve a two-dimensional
parallel time-stepping finite element problem using pri-
mal Domain Decomposition Method [3], [4], [5], [6],
[7]. The used primal DDM is also called the static con-
densation method, the method of sub-structuring or
the Schur complement method [3]. The direct solver
is the parallel forward-backward method with parallel
factorisation [4], [5]. The iterative solver is a parallel
Krylov method, the parallel preconditioned conjugate
gradient method [3], [6], which is currently one of the
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most popular method for systems with real symmetric
positive definite matrices. Two preconditioners, Jacobi
and Neumann-Neumann preconditioner [7] used in the
solver algorithm to improve the convergence behaviour.
We present the numerical behaviour of the parallel di-
rect solver and the parallel PCG solver with precon-
ditioners for the modelling of electrical machine with
direct coupled field-circuit formulations [2].

The paper is organized as follows. The next section
briefly describes the used equations and methods to
give an introduction to the formulation of the parallel
time-stepping finite element method coupled with cir-
cuit and mechanical oscillation equations. The third
section describes the Schur complement method and
how this method, and its direct and iterative solver
algorithms can be used to formulate and solve a cou-
pled problem. Section 4. collect numerical results
to illustrate the potential of the method, an induction
machine with different mesh size are then presented.
Finally, some extensions of the method are discussed.

2. Field-Circuit Coupling
Finite Element Formulation

The electrical machine is modelled in two-dimensional
space, using the FEM to discretize the domain, which
is based on the weak formulation of the partial differ-
ential equations, which can be obtained by Maxwell’s
equations and the weighted residual method [1]. The
magnetic vector potential formulation has been ap-
plied, and the temporal derivatives are discretized by
the backward Euler’s scheme [2]. The field and exter-
nal circuit equations are combined together using the
direct coupling method [2], [6]. Equation (1) shows the
matrix system of the field equations [2], [6]:

SA(t) + N d
dtA(t)−PI(t) = 0,

Q d
dtA(t) + RI(t) + L d

dtI(t) = U(t),
(1)

where A is the vector of magnetic vector potential, I is
the vector of currents in the windings, U is the vector
of voltages at the terminal of the winding, S is the ma-
trix related to permeability, N is the matrix related to
electric conductivity, P is the matrix associated with
constant coil current, Q is the matrix associated with
flux linkage, R is the matrix of d.c. resistance of wind-
ings, L is the matrix of the end-windings inductances.

In order to simulate the rotation of the rotor in the
two-dimensional case, we used one of the most common
method, the so called sliding surface technique with
first order nodal interpolation method [8]. The inter-
polation method is necessary, when the fixed (stator)
and mobile (rotor) part of the mesh are non-conforming
because of variation of angular speed. The new angu-

lar speed and rotor displacement are evaluated by the
mechanical oscillation equation [6]:

Jr
d
dt
ωr −Drωr = Te − TL,

d
dt
αr = ωr,

(2)

where Jr is the rotor inertia moment, Dr is the friction
damping coefficient, Te is the electromagnetic torque,
TL is the load torque acting on the mechanical axis,
ωr is the rotor speed, and αr is the rotor angular po-
sition. At each time step, the electromagnetic torque
is calculated via the Maxwell’s stress tensor [2], [6] by
the following relationship:

Te = L

∫
Γ

{
~r ·
[

1

µ0
(B~nB)− 1

2µ0
B2~n

]}
dΓ, (3)

where L is the axial length of the domain, and ~r is the
position vector linking the rotation axis to the element
dΓ, and Γ is a surface, which is placed in the middle
of the air gap, B is the magnetic flux density, µ0 is
the permeability of vacuum, and ~n is the normal unit
vector to the surface.

3. Primal Domain
Decomposition Method

When domain decomposition method is used, the prob-
lem domain Ω is to divide into several sub-domains
in which the unknown magnetic vector potentials
and currents can be calculated simultaneously, i.e. in
a parallel way. The general form of a linear algebraic
problem arising from the discretization of a parabolic
type problems defined on the domain Ω can be written
as Ka = b [3], [5], in more detail:

K =

[
S + N

∆t −P
Q
∆t R + L

∆t

]
,

a =

[
A(t)
I(t)

]
,

b =

[
N
∆t 0
Q
∆t

L
∆t

]
·
[
A (t−∆t)
I (t−∆t)

]
+

[
0

U (t)

]
,

(4)

where K ∈ R(n×n) is the mass matrix, b ∈ R(n×1) on
the right hand side of the equations, and a ∈ R(n×1)

contains the unknowns. Here n is a number of un-
knowns.

After the problem is partitioned into a set
of NS disconnected sub-domains, as it can be seen
in Fig. 1 and the linear sparse system, Ka = b has
been split into NS particular blocks [3], [4], [5], [6].
For each sub-domains, the nodes are partitioned into
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interior nodes designated by the subscript i, and in-
terface boundary nodes designated by the subscript Γ.
If the interior nodes are numbered first and the inter-
face boundary nodes are numbered last, then the sum-
domain equation system can be written in the following
matrix form [3], [6].[

Kjj KjΓ

KΓj KΓΓ

]
·
[
aj
aΓ

]
=

[
bj

bΓ

]
, (5)

where j = 1 · · ·NS , Kjj is the positive definite sub-
mass matrix of the jth sub-domain, bj is the vector
of the right hand side defined inside the sub-domain.
The sub-matrix KjΓ = KT

Γj contains the coefficients
of jth sub-domain, which connect to the interface
boundary unknowns of that region. The superscript
T denotes the transpose. KΓΓ, and bΓ expresses the
coupling of the interface unknowns. It should be noted,
that it is much easier in the parallel computation,
if the sliding surface is used as an interface boundary
in the air gap, as it can seen in Fig. 1.

Fig. 1: Domain decomposition of the finite element mesh of the
induction motor.

Each sub-domain will be allocated to an independent
processor core, because the sub-matrix Kjj with the
KjΓ, KΓj and the right-hand side bj are independent,
i.e. they can be assembled in parallel on distributed
memory. Only the matrix KΓΓ, and the vector bΓ are
not independent. The matrix KΓΓ and the vector bΓ

are assembled after interprocess data transfer, because
they are the assembly ofKΓΓ and bΓ. KΓΓ is called the
local Schur complement, and KΓΓ is the mass matrix
of the reduced system, the Schur complement of the
problem.

The assembly and the solution of the sub-matrices
can be performed parallel by independent processors.
However, the solution requires exchange of interface
values, aΓ between the processes in charge of the var-
ious sub-domains. In many practical applications,

the forward-backward method with LU factorisation,
or the preconditioned conjugate gradient method is
used because of its simplicity and efficiency.

The practical implementation of the parallel
forward-backward substitution with parallel factorisa-
tion can be found in [4] and [5].

The parallel implementation of the preconditioned
conjugate gradient method can be found in [3] and [6].

In this case, two preconditioners have been used,
the Jacobi preconditioner [3], [6] and the Neumann-
Neumann preconditioner [7]. The Jacobi precondi-
tioner is one of the simplest forms of preconditioning,
in which the preconditioner is chosen to be the diagonal
of the matrix. The Neumann-Neumann preconditioner
is defined by approximating the inverse of the sum
of local Schur complement matrices by the weighted
sum of the inverses [7].

To illustrate how the above mentioned domain de-
composition method with parallel solvers are imple-
mented into the field-circuit coupled finite element
method.

4. Application

In this section, to demonstrate the operation of the
presented methods, a 4-pole 3-phase 3 kW induction
motor with un-skewed rotor slot fed by sinusoidal volt-
age is tested. The test problem and parameters, and
the GMSH model is from the free GetDP models it can
find in [9], [10].

Fig. 2: The assembled results, the equipotential lines of mag-
netic vector potential and the magnetic flux density vec-
tors.

The studied domain consists of one pole of the ma-
chine, i.e. a 45 ◦ domain, as you can see in Fig. 2.
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Anti-periodic boundary conditions are used to repre-
sent the whole problem. In this simulation, 20 periods
have been calculated, and a period of the 50 Hz voltage
excitation has been divided into 300 time steps.

Numerical experiments have been performed on plat-
form composed of four CPUs Intel Xeon L5420. Each
CPU is a Dual-core processor running at 2.5 GHz.
It supplies 8 × 4 GB RAM memory. The benchmark
presented in this paper consists in performing 15 times
the same operation in order to overcome the problem
caused by the finite precision of the clock. The imple-
mented program has been developed under the MAT-
LAB [11] computing environment in C language and in
own scripting language of the MATLAB [11].

We compare the implemented method for different
mesh size. Table 1 contains the data about the par-
titioned finite element mesh in various global element
size factors. In the Tab. 1, the number of degree of free-
dom of the unpartitioned problem, GDoF, the number
of degree of freedom of one sub-domain, DoF, the num-
ber of interface unknown, CDoF are summarized.

Tab. 1: Data of the different used finite element meshes.

Globalel
ement
size

Factor
(GDoF)

Number of processor cores
CDoF
(DoF)

2 4 8
0.05

(2900)
33

(1450)
71

(725)
130
(363)

0.025
(5832)

52
(2916)

118
(1458)

206
(729)

0.01
(23208)

102
(11604)

265
(5802)

445
(2901)

0.008
(35421)

128
(17711)

321
(8855)

508
(4427)

0.006
(58724)

155
(29362)

420
(14681)

679
(7340)

0.004
(129194)

249
(64597)

644
(32299)

1140
(16150)

0.003
(224308)

339
(112154)

802
(56077)

1343
(28039)

In order to use the same stop criterion for the meth-
ods, ε = 10−8. The speedup has been calculated by
the following formula,

Speedupsf =
Time1

Timesf
, (6)

where Time1 is the running time in the case of the
smallest element size factor, and Timen is the running
time of the different size factor [6]. The efficiency has
been calculated by the following formula:

Efficiency =
Speedupsf

n
, (7)

where Speedupsf is the speedup in the case of the dif-
ferent element size factor, and n is the applied proces-
sor cores [6].

The performance results of the parallel program are
reported in Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7 and
Fig. 8 for all element size factor. The speedups (Fig. 3,
Fig. 4 and Fig. 5) are computed using the wall clock
time of smallest problem (2900 GDoF) as the reference
point. The results show the speedup as high as 6.6
with direct solver, 9.8 and 10.8 with iterative solver for
the Jacobi preconditioner, and the Neumann-Neumann
preconditioner, respectively. In both iterative case, the
speedup is continuously increase until the 0.004 ele-
ment size factor, because the time of the interprocess
communication is relatively smaller, than the time of
the parallel PCG. This is also true for the direct solver
until 0.006 element size factor. However, this is not
true for the largest test cases. When the sub-problems
are too big, and the operations of both parallel solvers
are very time consuming. Further the memory require-
ment of the program is also very high in this case. This
conclusions are also supported by the figures of effi-
ciency, as it can be show in Fig. 6 in the case of direct
solver, Fig. 7 in the case of Jacobi preconditioner, and
in Fig. 8 in the case of Neumann-Neumann precondi-
tioner.
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Fig. 3: The speedup of the parallel FEM procedure with direct
solver.
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Fig. 4: The speedup of the parallel FEM procedure with Jacobi
preconditioner.
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Fig. 5: The speedup of the parallel FEM procedure with
Neumann-Neumann preconditioner.
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Fig. 6: The efficiency of the parallel FEM procedure with direct
solver.
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Fig. 7: The efficiency of the parallel FEM procedure with Ja-
cobi preconditioner.

Figure 9 and Fig. 10 show the running performance
of the preconditioned conjugate gradient solver,
the number of iteration versus global element size

factors at three different number of processor cores.
The interprocess communication hardly depend on the
number of interface unknowns (CDoF in Tab. 1) and
the number of applied processor cores. However, the
number of iteration shows the robustness of the pre-
sented algorithm, because the curves are continuously
increase, so the solver more or less independent from
the number of degree of freedom and the number of
interface unknown.
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Fig. 8: The efficiency of the parallel FEM procedure with
Neumann-Neumann preconditioner.
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Fig. 9: Number of iteration of PCG with Jacobi preconditioner.

Figure 11, Fig. 12 and Fig. 13 show the simulation
results of the induction machine. These figures show
the first ten periods of the simulations. Figure 11 shows
the transient speed waveform. Figure 12 shows the
transient torque waveform of the machine. Figure 13
shows the transient current waveforms of the stator
windings.
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Fig. 10: Number of iteration of PCG with Neumann-Neumann
preconditioner.
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Fig. 11: The speed variation in time.
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Fig. 12: Electromagnetic torque variation in time.
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Fig. 13: The time variation of the three phase currents.

5. Conclusion

In this paper, a two-dimensional parallel finite element
modelling of an induction machine have been presented
taking rotor movement and field-circuit equation
of the windings into account. To study the opera-
tion of the implemented method, different global fi-
nite element size factor have been considered. Results
of numerical experiments on all mesh sizes compared.
The parallel direct and the parallel PCG solver with
the preconditioners are work properly, as the presented
results show. Furthermore, the results obtained for the
simulation of the induction machine have also been pre-
sented.

The numerical experiments show the work of the im-
plemented program is hardly depend on the size of the
problem. If the problem size is too large, the efficiency
of the computation is decreased, so the running per-
formance of the implemented program is depend on
the size of the problem. However, it can be concluded
based on the presented results, the parallel direct solver
is more efficient for the smaller problems, whereas the
iterative solver is more useful for larger problem.

It should be noted, that only a two-dimensional
benchmark has been used for the numerical tests. The
tests with more complex three-dimensional problems
will be the subject of a forthcoming work.
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