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Summary. The present paper deals with some theoretical derivations connected with very efficient method of solution of 
hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a 
tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed 
circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current 
electrical circuit has been designed. 
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1. INTRODUCTION 

In connection with development of computer 
technologies solutions of complex mathematical 
models of physical problems have taken place. One 
of such problems deals with computer aided 
simulation and investigation of physiological 
functions of a human organism [1]. The present 
paper focuses on a problem of modelling of 
processes, which take place in a human 
cardiovascular system. Theoretical analysis and 
computer aided modelling represent very useful and 
efficient tool for diagnostics of cardiovascular 
diseases and preparation of treatment [2], [3].  
 The paper deals with utilisation of electro-
mechanical analogy for simulation of blood flow in 
blood vessels. The blood flow is formally similar to 
propagation of electric current along electric lines. 
Differential equations of hydrodynamic processes in 
a tube are similar to those describing transmission of 
electric charge in an electric line. Analogy of 
mechanical and electric quantities should be 
documented by Table 1. 
 
Tab. 1 

Mechanical quantity Electric quantity 
Liquid flow I * Electric current I 
Mass density ρ Inductivity L 

Kinetic energy ½ ρ v2 Magnetic energy ½ L I 2 

Pressure p Electric potential ϕ 
Compliance k Electric capacity C 
Elastic energy ½ k p 2 Electric energy ½ C U 2 

Viscosity η Resistance R 

Viscose losses  η v 2 Electric losses  R I 2 

Wave resistance  Wave resistance  

Wave velocity  Wave velocity  
 
Analogy of hydrodynamic (mechanical) process in a 
tube and transmission of electric current can be 
demonstrated by schematic drawing in the Fig. 1. 

 
Fig. 1. Analogy of a tube with liquid and an electric line. 

(a) Section of a homogeneous tube.  
(b) Section of a homogeneous two-wire line. 

 
Longitudinal impedances ZL

* (mechanical) and ZL 
(electric) represent conservative and dissipative 
components, transversal admittances YT

* and YT 
describe cross elasticity and inter-wire capacity and 
cross losses. All quantities are defined for a unit of 
length. In case of harmonic time dependences with 
angular frequency ω we obtain equations for 
complex amplitudes of the quantities 
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These couples of equations lead to wave equations 
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where complex wave numbers are 

 ∗∗∗ ±= TL YZk   or  TL YZk ±= . (D) 

Taking real and imaginary parts into account 
 k =  ± ( α  +  j β ) , 
the direct wave of current or any other quantity 
depends on propagation coordinate z and time t as 
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and has a wavelength  λ = 2π/α and coefficient of 
attenuation β. 
 We can see that solution of hydrodynamic 
processes in viscose liquids can be treated with 
formal tools of theory of electric circuits. Complex 
network of vessels can be taken as a network of 
parts of electric lines with different parameters. Such 
system can be solved by means of standard 
computer programs like MATLAB or others. 
 The main question of the analogy-based 
methodology consists in derivation of relationships 
for primary lines parameters ZL and YT . 
 
2.  PARAMETERS OF LIQUID FLOW 

We shall investigate behaviour of liquid in an elastic 
tube. In order to simplify a general theory with 
respect of real conditions in most vessels we 
suppose non-turbulent flow of viscous liquid. Such 
liquid obeys the Navier-Stokes equation 
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where ρ is the liquid density, v – local flow velocity, 
p – pressure, η - dynamic viscosity and f – external 
force density. 
The additional condition of continuity of the liquid 
flow is  

 ( )
t

div
∂
∂−= ρρ v . (2) 

In our case we shall suppose an incompressible 
liquid with constant density ρ and all external forces 
will be neglected, f = 0. 
We shall describe a flow of liquid in a cylindrical 
elastic tube. Taking geometry of the system into 
account it is convenient to use cylindrical 
coordinates (r,ϕ, z). 
Due to axial symmetry there is vϕ = 0 and the eq. (1) 
can be broken into only two components 
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Eq. (2) obtains a form 
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Under practical conditions of long wavelength of 
pressure wave λ  >> r0 (r0 is the tube radius) and 
because of it we can suppose 
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After neglecting the smaller terms we obtain a 
system of two coupled linear equations 
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The system of partial differential equations will be 
solved for a case of harmonic time-dependence with 
angular frequencyω. We suppose a front wave in the 
tube so that the dependences of quantities should be 
expressed in the complex-functions form 
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Substituting them in (3) and (4) we obtain ordinary 
differential equations 
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The first two are Bessel equations. Using a 
transformation r → a r, where 

 
η
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solutions of the Bessel equations have a form  
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where J0 and J1 are Bessel functions of the orders 

0 and 1, A and B are proper constants, ( )rF&  and 

( )rG&  are particular integrals respecting right sides of 
the differential equations. 
The solutions must respect the third equation (6 c) – 
the binding condition. After substitution and 
utilization of basic properties of Bessel functions1 
we obtain 
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Substituting (9) into (6 b) we obtain a differential 

equation for the complex function ( )rG&  
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Variation of pressure across the tube is negligible 
                                                           
1  )()( 10 xJxJ −=′   and 
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and it means that ( ) PrP ≈&  is real constant. It means 

that the partial integral ( )rG&  must be constant as 
well and we obtain 
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Taking eq. (11) with the constant right side term into 
account, we obtain solution for the partial integral 

( )rF& , which has a form 
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In addition we must take boundary conditions into 
account. Radial component of the fluid velocity at 
the tube wall must respect its movement caused by 
its elasticity. We suppose a wave of pressure (5) and 
corresponding modulation of the radius of the wall 
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where r0 is the undisturbed radius of the tube wall 
under an average pressure and 0r&∆  is complex 
amplitude of its modulation. The radial velocity at 
the tube wall is then 
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Because of symmetry the radial velocity is zero at 
the tube axis 
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The longitudinal component of the fluid velocity 
reaches its maximum at the axis 
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and it is zero at the tube wall  

 0)( =wz rV&  (18) 

because of adhesion of the fluid to the tube wall.  
 We shall now solve separately both components of 
the fluid velocity. At first we neglect the influence 
of the pressure wave on the boundary condition (18), 

which means ( ) ( )0rVrV zwz
&& ≈  = 0. According to this 

condition we obtain, eq. (9), 
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The asked constants of the general solution are then 
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Resulting components of the fluid velocity are 
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The total fluid flow through the tube is2 
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Taking (5) into account, we can write the fluid flow 
in a form 
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If we compare this result with introductory relation 
(A), we obtain the longitudinal impedance 
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Next we take condition (15) into account 
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We suppose the linear relation between pressure and 
wall radius modulations 
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where K = Kw + j ω ηw, Kw is the volume stiffness of 
the tube wall and ηw – coefficient of internal friction 
(cause of deformation losses), κ - geometrical factor. 
Relation between pressure and change of radius can 
be expressed as 
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With respect of (D) and (24) we obtain transversal 
admittance 
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Using a linear model, we have derived components 
of the model parameters according to the Fig. 1. 
 
3. CIRCUIT OF THE TUBE ELEMENT 

Now we have to change terms (23) and (26) into 
electric-like circuits. At first we shall suggest design 
of the longitudinal element with the impedance ZL 
(eq. 23). We have a Bessel function of a complex 
variable. The most effective way to suggest a 
corresponding circuit structure consists in spreading 
out the term into a series 
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This expression can be written in the from of chain 
fraction 
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This fraction can be taken as the impedance of the 
structure designed in the Fig. 2. 

 

  Fig. 2. 
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Under real conditions the typical values of quantities 
are η ≈ 3.0 mPa�s, ρ ≈ 1.1×103 kg�m-3, r0 ≈ 1.0 mm, 
f ≈ 1.0 Hz and then R0 ≈ 3.8×109 Pa�s�m4 and 
ωL0 ≈ 2.2×109 Pa�s�m-4. Using only the direct line 
R1, L1 and L2 we obtain the impedance 
ZL1/R0 ≈ 2.144 ∠0.368 rad. Taking the first bridge 
R2, L3 into account ZL2/R0 ≈ 2.152 ∠0.367 rad and 
with another bridge R3, L4 the difference occurs at 
the fifth digit. In means that the 5-elements circuit 
R1, R2, L1, L2 and L3 is sufficiently accurate. 
 Parallel admittance (26), on the other side, is 
given by a simple expression, which can be modified 
as 
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It represents a series of capacitor Cp and resistor Rp.  
Resulting analogy circuit of the homogeneous 
section of a tube is in the Fig. 3.  

  
Fig. 3. 

 
We took only alternating parts of hydrodynamic 
quantities and passive tube into account. There exist 
effects of active behaviour of blood vessels 
(supporting pumping mechanism) or additional 
constant pressure component of gravity and average 
blood pressure. These effects are added to the 
analogy circuit by means of serial source UL. The 
parallel source Up represents a constant tonus of 
blood vessels. 
 
CONCLUSION 

The derived analogy circuit is an image of a real 
blood segment and reflects all linear processes, 
which take place in it. The tree of blood system can 
be composed of such segments of different 
properties. There are computer methods of 
programming such systems and solving different 
dynamic processes. Another possibility of further 
development of the model consists in taking non-
linear effects into account. 
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