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Abstract. The paper deals with model-based attitude
estimation for multicopters and is mainly focused on
investigation of accuracy degradation due to wind and
inaccurate model parameters which are conditions al-
ways present when using in real world. At first the need
for model-base estimation is motivated. Then the mul-
ticopter model is described. Based on the mathematical
model of multicopter, the estimation algorithm utilizing
the extended Kalman filter is constructed. The main
contribution of the paper is the investigation of the neg-
ative impact of the wind and of inaccurate knowledge
of the model parameters.
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1. Introduction

Multicopters are VTOL (Vertical Take-Off and Land-
ing) aerial vehicles (AVs) included within the class of
multirotor helicopters. These vehicles differ from stan-
dard helicopters in that they use rotors with fixed-pitch
blades, and thus their rotor pitch does not vary as the
blades rotate. Currently existing versions comprise 4
or more rotors (x-copters); the hexacopter uses 6 rotors
(Fig. 1).

There also exist versions with fewer rotors, but they
require additional moving components for stabilization,
thus they do not possess the mechanical simplicity fea-
ture.

At present, these types of AVs are used as a stan-
dard platform for robotics research. The first objec-
tive in the construction of automatic control systems
for these AVs is to ensure stable flight at low velocities,
particularly during the hovering phase. The design of
x copter control elements has hitherto been discussed
by a large number of authors. Generally, the con-

Fig. 1: The experimental multicopter: hexacopter.

trollers are designed as linear SISO systems [1], PID
systems [2], special nonlinear controllers [3] or [4], and
even neural net controllers [5]. The most important
component of the control loop is a good feedback sig-
nal providing correct information about the AV’s atti-
tude. Although the majority of the above-mentioned
systems use on-board sensors, the necessary feedback
can be also provided by off-board sensing elements [6].
The most widely used devices for attitude estimation
are inertial sensors and magnetic field sensors based
on MEMS technology, namely MEMS accelerometers,
gyroscopes and magnetometers. In fact, these devices
form a strap-down inertial measurement unit (IMU),
and they have become the main attitude sensors due
to their low cost. Other sensors, such as sonar range
finders, cameras, lasers, or GPS, are used especially for
position feedback.

A significant factor in the design of a control sys-
tem is a good mathematical model which describes
both dynamics of the AV itself and dynamics of the
IMU as well. In most papers, the presented models of
controlled AVs consider only the forces and moments
caused by propellers in hovering and neglect all other
aerodynamic effects because of the low linear velocities.
Such models do not produce accelerometer data usable
for good feedback ensuring accurate information on the
attitude of an AV [7].
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The basic sensors of IMU do not provide direct in-
formation about the attitude of the AV. To provide
the right information about the attitude of the AV,
the sensor signals must be appropriately handled. At
present, the processing of such signals is performed by
the algorithm of Kalman filtering. This algorithm is
used in the calculation of the attitude in form of the
combination of prediction and correction. For the pre-
diction a suitable dynamic model is used, the correction
is carried out by direct measurement. Thus well cho-
sen model of prediction can improve information about
the attitude of the AV. The following article shows and
discusses characteristics of such a model and its use for
estimation.

2. Model Based Attitude
Estimation

The typical attitude estimation algorithms [10] use
no assumptions about dynamics of the examined ob-
ject. They rely only on the used sensors (typically ac-
celerometers, gyroscopes, magnetometers, GPS etc.).
With good model including the knowledge of the dy-
namic properties can provide more accurate results.
But any unmodeled effects or inaccurate model param-
eters can degrade the accuracy and even make the re-
sults worse than without the dynamic model.

Multicopters are obviously good adepts (inputs
to the system are known, several dynamics models
were constructed) where including the dynamic model
should improve the accuracy. The analysis of inaccu-
rate model parameters and unmodeled effects (namely
wind) is subject of this paper.

In the following section multicopter dynamic model
based on the recent papers is described. In the fourth
section the dynamic model based attitude estimation
algorithm is constructed. The results of simulations,
where mainly the effects of wind and inaccurate model
parameters are studied, are in section 5.

Finally in the section 6 the wind effect mitigation is
described.

3. Multicopter Model

In this chapter the mathematical model of multicopter
is mentioned. This model was used for generation of
input data for simulation of attitude estimation algo-
rithm. Additionally the model was also used for de-
signing the estimation algorithm itself. The biggest
advantage of using mathematical model for generation
of testing data is the knowledge of the true values of all

states. This feature enables direct comparison of the
estimated state with the true state.

Mathematical model of multicopter is studied in
many recent publication focused mainly on attitude
and position control [1], [2], [3], [4], [5] but also for
attitude estimation [10]. They differ in level of preci-
sion and in number of modeled effects. Here mentioned
model is based on all cited works, and the main effects
of interest are aerodynamic drag, wind and precise sen-
sor models.

This particular model assumes the multicopter has
6 motors with propellers arranged equidistantly on a
circle with radius L. The scheme of the multicopter is
in Fig. 2.

Fig. 2: Scheme of multicopter with 6 motors (top view).

Two coordinate frames are used throughout the de-
scription of the multicopter model. Body frame is the
coordinate system rigidly linked with the multicopter.
The orientation of body frame axes with respect to
multicopter is depicted in Fig. 2. Reference frame is
a coordinate system with respect to which the atti-
tude of body frame is investigated. Usually this frame
is linked to local vertical direction and to true north
direction. In this work this frame is assumed to be
inertial frame. It means that Coriolis force, earth rota-
tion and transport rate, which are common for frames
linked with earth surface, are neglected. This approx-
imation is valid when the usage of low-cost sensors is
expected since these effects are beyond the resolution
of the sensors.

3.1. Forces and Torques

Forces and torques are driving the motion of the mul-
ticopter. The total force and torque are composed of
different sources: thrust of individual propellers, aero-
dynamic drag and gravity.
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1) Motors with Propellers

Thrusts of individual propellers are related to the con-
trol signal. This relation is modeled by this equation.

Ti = cTS
2
i , (1)

where Ti is thrust of i-th motor, cT is a positive con-
stant parameter and Si is control value for i-th motor.
Each motor also generates reactive torque, which has
opposite direction than the angular rate vector of the
motor shaft. The magnitude of the reactive torque is
assumed to be proportional to motor thrust.

~mi = −cRTi
~ωi

‖~ωi‖
, (2)

where ~mi is the reactive torque vector of i-th motor, cR
is a positive constant parameter and ~ωi is the angular
rate vector of i-th motor shaft. The resulting force
and torque vector generated by thrusts of motors are
computed using. Fz
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where Fz is the z-component of force vector, ~FBT ex-
pressed in body frame respecting the coordinate sys-
tem defined in Fig. 2, Mx, My, Mz are components of
torque ~MBT expressed again in body frame, L is length
of the multicopter arm and cR is constant parameter
defined in Eq. (2). The matrix A can be derived using
simple mechanics and Fig. 2.

2) Aerodynamic Drag

Aerodynamic drag is very often neglected in multi-
copter models. However, this phenomenon enables use
of the accelerometer measurements in the attitude es-
timation. This is the main reason why this drag is
implemented in this multicopter model.

The aerodynamic drag force is modeled as linearly
dependent on the relative velocity with respect to wind.

~FBA =

 −kxvwxb−kyvwyb
−kzvwzb

 , (4)

where ~FBA is drag force vector expressed in body
frame, ki are positive constant parameters and vwib are

components of relative velocity with respect to wind
expressed in body frame. This is a simplified version
of propeller induced aerodynamic drag from [7]. The
reason why the parameters ki are constant in body
frame comes from the constant rotation axis of pro-
pellers with respect to this frame. The parameter kz is
assumed to be of order smaller than the kx and ky, be-
cause the z body axis is parallel to the axis of rotation
of the propellers and the main contributor to the aero-
dynamic drag is the blade-flapping phenomenon which
occurs only in the axis perpendicular to the propeller
rotation [7].

The aerodynamic drag torque is similarly modeled
as linearly dependent on angular rate.

~MBA = −kM~ωB , (5)

where ~MBA is drag torque vector expressed in body
frame, kM is positive constant parameter and ~ωB is
angular rate vector expressed in body frame. The aero-
dynamic drag torque is based on the experience that
angular rate settles on some finite value when constant
torque is applied. In many recent multicopter models
this effect is omitted.

3) Total Acceleration and Angular
Acceleration

All the mentioned forces and torques are summed and
divided by mechanical properties to form the final ac-
celeration ~aI and angular acceleration ~εB .

~aI = ~gI +
RBI(~FBT + ~FBA)

m
, (6)

where ~aI is acceleration expressed in inertial frame, ~gI
is gravitational acceleration expressed in inertial frame,
RBI is transformation matrix from body to inertial
frame and m is the mass of the multicopter.

~εB = [( ~MBT + ~MBA)− (~ωB × IB~ωB)] · I−1B , (7)

where ~εB is angular acceleration, ~ωB is angular rate
and IB is inertia matrix of the multicopter, all variables
expressed in body frame.

3.2. Multicopter Motion

The motion of multicopter is modeled as the 6–DoF
rigid body motion driven by forces and torques de-
scribed above. The motion state is described by veloc-
ity and position for translational motion and by angu-
lar rate and attitude quaternion for rotational motion.
This part is valid for any aerial vehicle and is expressed
by the following differential equations.
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1) Position and Velocity

~̇p = ~vI , ~̇vI = ~aI , (8)

where ~p is position vector, ~vI is velocity vector ex-
pressed in inertial frame and ~aI is acceleration vector
expressed in inertial frame.

2) Attitude and Angular Rate

~̇q =
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where ~q is attitude quaternion and ωx, ωy, ωz are com-
ponents of angular rate vector expressed in body frame.

~̇ωB = ~εB , (10)

where ~ωB is angular rate vector expressed in body
frame and ~εB is angular acceleration vector expressed
in body frame.

3.3. Wind

Since the aerodynamic drag force is dependent on ve-
locity with respect to wind and the acceleration mea-
sured by accelerometers (used for attitude estimation)
is the time derivative of the inertial velocity, it is rea-
sonable to model the wind to be able to reveal possible
negative impact of this fact on the accuracy of attitude
estimation.

The wind is specified by instant velocity vector ex-
pressed in inertial frame and in this work is assumed
to be only function of time. The total wind velocity
consists of static and dynamic part. Static part is a
constant velocity vector expressed in inertial frame and
corresponds to dominant constant wind experienced in
real condition. Dynamic part is time dependent and
each component of the dynamic velocity is modeled as
a first order Gauss Markov process [11]. The dynamic
component corresponds to short time variation of the
wind (wind gust). The behavior of the dynamic part
can be adjusted by steady state variance and by time
constant of Gauss Markov process.

In Fig. 3 there is the output of the wind model sim-
ulation with time constant τ = 7 s, constant speed
vector ~b = [2, 0,−2] m·s−1 and steady state deviation
of Gauss-Markov process σ = 0.3 m·s−1.

Fig. 3: Wind speed simulation.

3.4. Sensors

With respect to attitude estimation these sensors are
of interest:

• Gyroscope – measuring angular rate.

• Accelerometer – measuring specific force.

• Magnetometer – measuring magnetic field.

Each of this sensor senses the physical quantity along
three perpendicular axes parallel to body frame axes.
True values of these sensors can be easily computed
from true state available for multicopter model. True
values are then deliberately corrupted to have similar
characteristics like the real sensors of this type.

The same sensor model but with different parameters
is used for each of these sensors.

xOUT = xTRUE + bS + bD + n, (11)

where xTRUE is true value, xOUT is modeled senor
output, bS is constant bias, bD is dynamic bias mod-
eled as first order Gauss-Markov process and n is a
white noise. The qualitative characteristics of the sen-
sor model can be seen in Fig. 4, where zero true signal
is corrupted by all terms of the sensor model.

4. Implementation of
Model-Based Attitude
Estimation

The model-based attitude estimation is not new. Is
discussed in some papers including [12], [13]. The new
contribution is the identification and investigation of
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Fig. 4: Output of the sensor model.

main causes which could make the estimation less ac-
curate in real world. The model based attitude esti-
mation for multicopters assumes that this information
is available:

• Data from gyroscope, accelerometer and magne-
tometer.

• Control values for motors.

The traditional algorithms which process the sen-
sors from the first bullet use so-called vector matching
method. This method assumes that the accelerome-
ter measures gravitational field only (which holds some
information about attitude). But this is generally not
true during the whole flight and it is especially not true
during aggressive maneuvers and changes of attitude.

On the other hand the model based attitude esti-
mation use mathematical model with modeled aerody-
namic drag to predict the true accelerometer measure-
ment. The accuracy of this approach is then theoreti-
cally independent of the maneuvers flown by the aerial
vehicle.

The model based attitude estimator is based on the
mathematical model of multicopter mentioned in the
previous chapter. In Fig. 5 there is a scheme of the full
multicopter model.

The method used for estimation is extended Kalman
filter. It provides the best scalable framework for im-
plementation of such a model-based estimation prob-
lem. Extended Kalman filter is an iterative algorithm.
Each of its iteration consists of two steps. In prediction
step, the next value of the state is predicted based on
the inputs and the previous state. In update step the
corrections are computed using the measurements and
applied to the predicted state.

According to Fig. 5 the full model could be used as
a core of a Kalman filter estimator. It means use mo-
tor signals and wind speed for prediction of the state

Fig. 5: Scheme of the full multicopter model.

and then use all three sensors (gyroscope, accelerome-
ter and magnetometer) for correction of the predicted
state.

However the full model is slightly simplified for
model based attitude estimation for various reasons.
At first it is assumed that the multicopter is not
equipped with any kind of sensor capable of measur-
ing wind speed. For this reason the wind speed input
has to be neglected. Next, the motor signals are not
used for prediction of angular rate (measured directly
by gyroscopes), despite it is possible. This prediction
is not used in the presented estimation algorithm, as
the accuracy of the prediction is very low compared to
the accuracy even of low cost gyroscope. This opti-
mization leads to lower number of states of the filter
and in lower computation complexity. Additionally the
knowledge of inertia matrix of the multicopter is not
required.

Therefore the Kalman filter based on the simplified
model uses the gyroscope and motor signal for predic-
tion step and the accelerometer and magnetometer for
update step. The scheme of the simplified model is in
Fig. 6. The estimated wind is assumed to be zero in the
first version. Chapter 6 discuss the effect of estimation
of the wind speed.

The general equations of discrete extended Kalman
filter are:
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Fig. 6: Scheme of the simplified model used for attitude esti-
mation.

1) Prediction Step

~x(k + 1|k) = f(~x(k|k), ~u(k)),
P(k + 1|k) = F ·P · FT +Q. (12)

2) Update Step

K =
P(k + 1|k) ·HT

H ·P(k + 1|k) ·H+R
,

δ~z(k + 1) = ~z(k + 1)− h(~x(k + 1|k)),
~x(k + 1|k + 1) = ~x(k + 1|k) +K(δ~z(k + 1)),

P(k + 1|k + 1) = (I−K ·H) ·P(k + 1|k),

F =
∂f

∂~x
|~x(k|k),~u(k), (13)

H =
∂h

∂~x
|~x(k+1|k),

where ~x, ~u, ~z are the state, input and measurement
vectors respectively, P, Q, R are the covariance matri-
ces of state, inputs and measurements respectively, F
and H are Jacobian matrices of functions f and h and
finally k is the sample time index.

The estimation algorithm utilizing extended Kalman
filter is uniquely defined by the functions f and h and
by covariance matrices Q and R. The state, input and
measurements vectors for here presented model based

attitude estimation are defined as follows.

~x =
[
~q ~vI ~b

]
,

~u =
[
~ωg

~S
]
, (14)

~z =
[
~aB ~mB

]
,

where ~q is the four element attitude quaternion, ~vI is
the velocity vector expressed in inertial frame, ~b is the
gyroscope bias vector, ~ωg is the angular rate vector
sensed by gyroscope, ~S is the vector of motor control
inputs, ~aB is the specific force vector sensed by ac-
celerometer and ~mB is the magnetic field sensed by
magnetometer. In this case, of model based attitude
estimation algorithm, the function f consists of the fol-
lowing subparts:

• Discrete quaternion integration based on Eq. (9)
where the angular rate vector has the following
format to incorporate estimated gyroscope bias.

~ω = ~ωg −~b. (15)

• Inertial acceleration computation and discrete in-
tegration to obtain inertial velocity which are
based on Eq. (1), Eq. (3), Eq. (4) and Eq. (6).

• Bias propagation defined by Gauss-Markov pro-
cess [11].

~bk+1 = βD~bk. (16)

The function h which predicts the measurement val-
ues have the following parts.

• Specific-force prediction based on Eq. (1), Eq. (3),
Eq. (4) and Eq. (6) where gravity is excluded.

• The prediction of magnetic field in body frame.

~mb = RIB ~mI = RT
BI ~mI , (17)

where RIB is transformation matrix from inertial
to body frame and ~mI is supposed to be known
Earth magnetic field vector expressed in inertial
frame. The measurement model for magnetome-
ter assumes that magnetometer is measuring the
Earth magnetic field only which is generally not
true and care must be taken when using especially
in indoor environments.
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The covariance matrices Q and R are defined as fol-
lows [13].

Q =

 Qq 0 0
0 QV 0
0 0 QB

 ,
Qq = BQgB

T ,

B =
∂f

∂~ω
|~x,~ω,

Qg = diag(~σ2
g), (18)

QV = diag(~σ2
V ),

QB = diag(~σ2
B),

R = diag(~σ2
A, ~σ

2
M ),

where ~σg is standard deviation vector of gyroscope
white noise, ~σV is standard deviation vector repre-
senting the accuracy in computation of the velocity
increment, ~σB is standard deviation vector of white
noise driving the Gauss-Markov process for gyroscope
biases, ~σA is standard deviation of accelerometer which
overbounds all error sources of this sensor and ~σM is
standard deviation vector of magnetometer which over-
bounds all error sources of this sensor.

5. Simulations

The computer simulations of model-based attitude es-
timation algorithm, described in the previous chapter,
were targeted to find the limits of use of such algo-
rithm in real conditions. With respect to this aim, the
effects of wind and the inaccurate model parameters
on accuracy of attitude estimates were investigated.

At first the parameters of the full multicopter model
was defined. The summary of the model parameters
are in the Tab. 1. This model was then used for gener-
ation of two, 60 s long, testing trajectories. First is low
speed normal trajectory with tilts less than 45 degrees.
The second one is high speed aggressive trajectory with
tilts up to 85 degrees. The estimation errors for atti-
tude recomputed to Euler angles for both trajectories
are in Fig. 7 and Fig. 8. The error is computed as a
difference between estimated value and the true value.
Red lines in the figures are 1− σ accuracy of the esti-
mated state directly computed from the Kalman filter
covariance matrix. The model parameters used in es-
timation algorithm match the parameters used in the
generation of testing data. Wind is not present in these
cases.

5.1. Wind Effect

The reason that one can assume that wind should have
negative impact on accuracy of attitude estimation

Fig. 7: Estimation error for normal trajectory.

Fig. 8: Estimation error for aggressive trajectory.

comes from the fact, that in real world the aerody-
namic drag is proportional to relative velocity with re-
spect to wind while the estimation algorithm assumes
it is proportional to inertial speed.

It is appropriate to assume that constant wind will
have no effect on the accuracy of estimation because
with respect to attitude the constant wind will cause no
change of measurements in any used sensor. However
the changes of wind can cause significant change in ac-
celerometer measurements which are not predicted by
the model. This can obviously lead to decreased accu-
racy. The following simulations are performed to ver-
ify above hypothesis. On both testing trajectories, four
different settings of wind were simulated. The measure
of negative impact is the RMSE error of estimated at-
titude expressed in Euler angles. The different settings
of wind parameters are in Tab. 2. The resulting RMSE
values are in Tab. 3.
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Tab. 1: Full multicopter model parameters.

Model parameters
Parameter Value Parameter Value

Mass m = 1 kg Force drag z kz = 0.8 Ns·m−1

Inertia tensor I/103 kg·m2 Motor constant cT = 6.9 · 10−5 N
Torque drag kM = 0.2 Nm Torque constant cR = 0.05 Nm
Force drag x kx = 2 Ns·m−1 Arm length L = 0.2 m
Force drag y ky = 2 Ns·m−1

Sensor Parameters
Parameter Gyroscope Accelerometer Magnetometer
Static bias std 0.05 rad·s−1 0 m·s−2 0 mT

GM time constant 300 s 300 s 300 s
GM std 0.013 rad·s−1 0.041 m·s−2 0.041 mT

White noise std 0.014 rad·s−1 0.14 m·s−2 0.022 mT

Tab. 2: Wind parameters for different scenarios.

Static wind part velocity [m·s−1] Dynamic wind part

x y z Time
constant [s]

Standard deviation
of GM process [m·s−1]

Wind 1 0.5 -0.5 0.5 7.0 0.2
Wind 2 5.0 -5.0 5.0 7.0 0.2
Wind 3 0.5 -0.5 0.5 7.0 2.0
Wind 4 5.0 -5.0 5.0 7.0 2.0

Tab. 3: Resulting RMSE values of wind impact simulations.

Normal trajectory
RMSE (deg)

Aggressive trajectory
RMSE (deg)

Roll Pitch Yaw Roll Pitch Yaw
No wind 0.33 0.46 0.91 0.50 0.46 0.64
Wind 1 0.47 0.56 0.90 0.73 0.52 0.64
Wind 2 0.74 0.59 0.89 1.06 0.54 0.71
Wind 3 4.09 2.81 1.68 4.31 1.94 2.05
Wind 4 3.89 2.82 1.62 4.17 1.92 2.00

Tab. 4: List of parameters and their corruptions.

Mass Force
drag x

Force
drag y

Force
drag z

Motor
constant

Arm
length

Parameter corruption factor (%)
Scenario 1 - 70 - - - -
Scenario 2 - 130 - - - -
Scenario 3 - - - 70 - -
Scenario 4 - - - 130 - -
Scenario 5 - - - - 70 -
Scenario 6 - - - - 130 -

Tab. 5: Resulting RMSE values of inaccurate model parameters impact simulations.

Normal trajectory
RMSE (deg)

Aggressive trajectory
RMSE (deg)

Roll Pitch Yaw Roll Pitch Yaw
No wind 0.33 0.46 0.91 0.50 0.46 0.64
Scen. 1 0.88 0.75 1.02 2.11 1.25 1.46
Scen. 2 0.58 0.56 0.93 1.18 0.82 0.85
Scen. 3 1.13 0.65 0.93 3.42 2.33 1.27
Scen. 4 0.68 0.46 0.92 1.90 1.47 1.09
Scen. 5 3.27 1.55 1.23 6.70 5.51 2.76
Scen. 6 3.99 1.62 1.28 5.27 4.80 3.02
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Tab. 6: Resulting RMSE values for algorithm with or without the wind vector state.

Aggressive

Algorithm
With wind in

state RMSE [deg]
Without wind in
state RMSE [deg]

Roll Pitch Yaw Roll Pitch Yaw
Wind 1 0.80 0.63 0.67 0.73 0.52 0.64
Wind 2 0.91 0.62 0.69 1.06 0.54 0.71
Wind 3 2.11 0.74 1.38 4.31 1.94 2.05
Wind 4 0.94 0.62 0.76 4.17 1.92 2.00

The values in Tab. 3 indicate how the wind affects
accuracy of the attitude estimates. It can be concluded
that static part of the wind has almost no effect on es-
timation accuracy while dynamic part (the wind speed
changes) causes significant decrease of the accuracy.
Another conclusion is that the type of trajectory has a
little influence on accuracy when wind disturbance is
introduced.

5.2. Model Parameters

The inaccurate model parameters can also have nega-
tive impact on accuracy of attitude estimates. In order
to determine the quantitative information about this
effect, another set of simulations was performed.

The model parameters required in estimation algo-
rithm are listed in Tab. 4, where also the corruption
scenarios of selected parameters are defined. For each
scenario the corresponding parameter was corrupted in
estimation algorithm from its true value by the factor
shown in Tab. 4 and then the RMSE value for both
trajectories was computed which are listed in Tab. 5.
Mass and arm length are excluded from simulations,
since these quantities can be with ease very accurately
measured. In other words it is not expected that these
parameters would be inaccurate. The force drag y pa-
rameter is excluded because it is assumed that the be-
haviour in x and y axis will be very similar.

From Tab. 5 many interesting conclusions can be
made. At first the accuracy of estimation strongly de-
pends on the type of trajectory when some of the pa-
rameter is known inaccurately. Further the accuracy
of the force drag z parameter is more critical than the
ones for x and y axes. Finally the most critical pa-
rameter is constant relating the motor control signal
to motor thrust.

The results of this chapter show the accuracy degra-
dation effects which can be expected when using the
model-based estimation algorithm in real application.
The wind and model parameters are only a part of all
effect which can degrade the accuracy. Even the model
equations could be just approximations of real world
behavior (which is obviously true) but here mentioned
results can help suggesting on which part the deep re-
search should be performed to gain better accuracy.

6. Wind Effect Mitigation

As shown in section 5.1 the wind has negative impact
on attitude estimation accuracy using dynamic model
approach. One possible way how to inhibit this effect
is to include the wind speed vector into the estimated
states. In the previous case the model assumed that
velocity with respect to wind equals to inertial velocity.
In this case they differ by amount of the estimated
wind speed. The estimated wind speed is expressed in
inertial frame. By rewriting Eq. (4) one gets.

~FBA =
[
~viB −RIB~v

w
I

]T  −kx−ky
−kz

 , (19)

where ~viB is velocity vector with respect to inertial
frame expressed in body frame, RIB is transformation
matrix from inertial to body frame and ~vwI is estimated
wind speed vector expressed in inertial frame. Ad-
ditionally the individual components of wind velocity
vector are modeled as Gauss Markov process. In the
following simulations the parameters of Gauss-Markov
process for estimated state is the same as the one used
for generating the wind speed vector. Results of simu-
lations are in Tab. 6. The results show that including
the wind speed vector into estimated state space sig-
nificantly reduce the RMSE values for last two rows
where dynamic wind is present.

7. Conclusion

This paper reveals some properties of so-called model
based attitude estimation for multicopters. The stan-
dard model of multicopter with induced drag forces was
presented as a baseline for designing the estimation al-
gorithm. In simulations the performance of the filter
was verified on data generated by the full model with
advanced sensor models. Further the effect of wind and
inaccurate model parameters were investigated. The
results can be effectively used for focusing future re-
search on the key parts which have the biggest influ-
ence on estimation accuracy, namely the wind state
estimation and online parameter estimation.
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